Транзистор и тиристор отличие

Тиристоры относятся к полупроводниковым приборам структуры p-n-p-n, и принадлежат, по сути, к особому классу биполярных транзисторов, четырехслойных, трех (и более) переходных приборов с чередующейся проводимостью.

Устройство тиристора позволяет ему работать подобно диоду, то есть пропускать ток лишь в одном направлении.

И также как у полевого транзистора, у тиристора имеется управляющий электрод. При этом как диод, тиристор имеет особенность, — без инжекции неосновных рабочих носителей заряда через управляющий электрод он не перейдет в проводящее состояние, то есть не откроется.

Упрощенная модель тиристора позволяет нам понять, что управляющий электрод здесь аналогичен базе биполярного транзистора, однако имеется ограничение, которое заключается в том, что отпереть то тиристор с помощью этой базы можно, а вот запереть нельзя.

Тиристор, как и мощный полевой транзистор, конечно может коммутировать значительные токи. И в отличие от полевых транзисторов, мощности, коммутируемые тиристорами, могут исчисляться мегаваттами при высоких рабочих напряжениях. Но имеют тиристоры один серьезный недостаток — значительное время выключения.

Для того чтобы запереть тиристор, необходимо прервать или сильно уменьшить его прямой ток на достаточно продолжительное время, за которое неравновесные основные рабочие носители заряда, электронно-дырочные пары, успели бы рекомбинировать или рассосаться. Пока не прерван ток, тиристор будет оставаться в проводящем состоянии, то есть будет продолжать вести себя как диод.

Схемы коммутации переменного синусоидального тока обеспечивают тиристорам подходящий режим работы — синусоидальное напряжение смещает переход в обратном направлении, и тиристор автоматически запирается. Но для поддержания работы прибора, на управляющий электрод необходимо в каждом полупериоде подавать отпирающий управляющий импульс.

В схемах с питанием на постоянном токе прибегают к дополнительным вспомогательным схемам, функция которых — принудительно снизить анодный ток тиристора, и вернуть его в запертое состояние. А поскольку при запирании рекомбинируют носители заряда, то и скорость переключения тиристора сильно ниже, чем у мощного полевого транзистора.

Если сравнить время полного закрытия тиристора с временем полного закрытия полевого транзистора, то разница достигает тысяч раз: полевому транзистору чтобы закрыться нужно несколько наносекунд (10-100 нс), а тиристору требуется несколько микросекунд (10-100 мкс). Почувствуйте разницу.

Конечно, есть области применения тиристоров, где полевые транзисторы не выдерживают конкуренции с ними. Для тиристоров практически нет ограничений в предельно допустимой коммутируемой мощности — это их преимущество.

Тиристоры управляют мегаваттами мощности на больших электростанциях, в промышленных сварочных аппаратах они коммутируют токи в сотни ампер, а также традиционно управляют мегаваттными индукционными печами на сталелитейных заводах. Здесь полевые транзисторы никак не применимы. В импульсных же преобразователях средней мощности полевые транзисторы выигрывают.

Долгое выключение тиристора, как говорилось выше, объясняется тем, что будучи включенным, он требует для выключения снятия коллекторного напряжения, и подобно биполярному транзистору, у тиристора уходит конечное время на рекомбинацию или удаление неосновных носителей.

Проблемы, которые вызывают тиристоры в связи с этой своей особенностью, связаны прежде всего с невозможностью переключения с высокими скоростями, как это могут делать полевые транзисторы. А еще перед подачей на тиристор коллекторного напряжения, тиристор должен обязательно быть закрытым, иначе неизбежны коммутационные потери мощности, полупроводник чрезмерно при этом нагреется.

Иначе говоря, предельное dU/dt ограничивает быстродействие. График зависимости рассеиваемой мощности от тока и времени включения иллюстрирует эту проблему. Высокая температура внутри кристалла тиристора может не только вызвать ложное срабатывание, но и помешать переключению.

В резонансных инверторах на тиристорах проблема запирания решается сама собой, там выброс напряжения обратной полярности приводит к запиранию тиристора, при условии, что воздействие это достаточно длительное.

Так выявляется главное преимущество полевых транзисторов перед тиристорами. Полевые транзисторы способны работать на частотах в сотни килогерц, и управление сегодня не является проблемой.

Тиристоры же будут надежно работать на частотах до 40 килогерц, ближе к 20 килогерцам. Это значит, что если бы в современных инверторах использовались тиристоры, то аппараты на достаточно высокую мощность, скажем, на 5 киловатт, получались бы весьма громоздкими.

В этом смысле полевые транзисторы способствуют тому, что инверторы получаются более компактными за счет меньшего размера и веса сердечников силовых трансформаторов и дросселей.

Чем выше частота, тем меньшего размера требуются трансформаторы и дроссели для преобразования одной и той же мощности, это знает каждый, кто знаком со схемотехникой современных импульсных преобразователей.

Безусловно, в некоторых применениях тиристоры оказываются очень полезными, например диммеры для регулировки яркости света, работающие на сетевой частоте 50 Гц, в любом случае выгоднее изготавливать на тиристорах, они получаются дешевле, чем если бы там применялись полевые транзисторы.

А в сварочных инверторах, например, выгоднее использовать полевые транзисторы, именно в силу простоты управления переключением и высокой скорости этого переключения. Кстати, при переходе с тиристорной схемы на транзисторную, несмотря на большую стоимость последних, из приборов исключаются лишние дорогостоящие компоненты.

Тиристором называется управляемый полупроводниковый переключатель, обладающий односторонней проводимостью. В открытом состоянии он ведет себя подобно диоду, а принцип управления тиристором отличается от транзистора, хотя и тот и другой имеют по три вывода и обладают способностью усиливать ток.

Выводы тиристора — это анод, катод и управляющий электрод.

Анод и катод — это электроды электронной лампы или полупроводникового диода. Их лучше запомнить по изображению диода на принципиальных электрических схемах. Представьте, что электроны выходят из катода расходящимся пучком в виде треугольника и приходят на анод, тогда вывод от вершины треугольника — катод с отрицательным зарядом, а противоположный вывод — анод с положительным зарядом.

Подав на управляющий электрод определенное напряжение относительно катода, можно перевести тиристор в проводящее состояние. А для того чтобы тиристор вновь запереть, необходимо сделать его рабочий ток меньшим, чем ток удержания данного тиристора.

Тиристор, как полупроводниковый электронный компонент, состоит из четырех слоев полупроводника (кремния) p и n-типа. На рисунке верхний вывод — это анод — область p-типа, снизу — катод — область n-типа, сбоку выведен управляющий электрод — область p-типа. К катоду присоединяется минусовая клемма источника питания, а в цепь анода включается нагрузка, питанием которой следует управлять.

Воздействуя на управляющий электрод сигналом определенной длительности, можно очень легко управлять нагрузкой в цепи переменного тока, отпирая тиристор на определенной фазе периода сетевой синусоиды, тогда закрытие тиристора будет происходить автоматически при переходе синусоидального тока через ноль. Это несложный и весьма популярный способ регулирования мощности активной нагрузки.

В соответствии с внутренним устройством тиристора, в запертом состоянии его можно представить цепочкой из трех диодов, соединенных последовательно, как показано на рисунке. Видно, что в запертом состоянии данная схема не пропустит ток ни в одном, ни в другом направлении. Теперь представим тиристор схемой замещения на транзисторах.

Видно, что достаточный базовый ток нижнего n-p-n-транзистора приведет к возрастанию его коллекторного тока, который тут же явится базовым током верхнего p-n-p-транзистора.

Верхний p-n-p-транзистор теперь отпирается, и его коллекторный ток складывается с базовым током нижнего транзистора, и тот поддерживается в открытом состоянии благодаря наличию в данной схеме положительной обратной связи. И если сейчас перестать подавать напряжение на управляющий электрод, открытое состояние все равно останется таковым.

Чтобы запереть эту цепочку, придется как-то прервать общий коллекторный ток данных транзисторов. Разные способы отключения (механические и электронные) показаны на рисунке.

Симистор, в отличие от тиристора, имеет шесть слоев кремния, и в проводящем состоянии он проводит ток не в одном, а в обоих направлениях, словно замкнутый выключатель. По схеме замещения его можно представить как два тиристора, включенных встречно-параллельно, только управляющий электрод остается один общий на двоих. А после открытия симистора, чтобы ему закрыться, полярность напряжения на рабочих выводах должна измениться на противоположную или рабочий ток должен стать меньше чем ток удержания симистора.

Если симистор установлен для управления питанием нагрузки в цепи переменного или постоянного тока, то в зависимости от текущей полярности и направления тока управляющего электрода, более предпочтительными окажутся определенные способы управления для каждой ситуации. Все возможные сочетания полярностей (на управляющем электроде и в рабочей цепи) можно представить в виде четырех квадрантов.

Стоит отметить, что квадранты 1 и 3 соответствуют обычным схемам управления мощностью активной нагрузки в цепях переменного тока, когда полярности на управляющем электроде и на электроде А2 в каждом полупериоде совпадают, в таких ситуациях управляющий электрод симистора достаточно чувствителен.

Основное отличие — транзистор против тиристора

Транзисторы и тиристоры являются полупроводниковыми устройствами, которые имеют многочисленные применения в электрических цепях. главное отличие между транзистором и тиристором является то, что транзистор имеет три слоя полупроводниковтогда как тиристор имеет четыре слоя полупроводников, Иногда тиристоры называютуправляемые кремнием выпрямители (SCR).

Что такое транзистор

Транзисторы — это полупроводниковые устройства, которые могут действовать как усилители или переключатели в электрических цепях. Транзистор состоит из трех легированных полупроводников. Основные типы транзисторов включаютбиполярные переходные транзисторы (биполярные транзисторы) а такжеполевые транзисторы (полевые транзисторы) а такжебиполярные транзисторы с изолированным затвором (БТИЗЫ), Мы обсудили, как эти транзисторы работают в статьях, сравнивая разницу между BJT и FET и разницу между IGBT и MOSFET. Транзисторы имеют три терминала. Управляя напряжением, подаваемым на одну из клемм, можно контролировать ток через две другие клеммы этих устройств.

Что такое тиристор

Тиристор также имеет три контакта, такие как транзистор, и эти контакты называются «анод», «катод» и «затвор». Однако тиристор сделан из четыре слои легированных полупроводников. Функционально тиристор действует как комбинация двух транзисторов, как показано ниже:

Вы можете думать о тиристоре как о двух транзисторах, работающих вместе. Справа: символ тиристора.

Тиристор имеет три режима:

  1. Режим обратной блокировкиВ этой установке анод имеет более отрицательный потенциал, чем катод. Это означает, что соединения J1 и J3 смещены в обратном направлении в то время как соединение J2 вперед смещен. В этом режиме ток не может течь через тиристор.
  2. Режим прямой блокировкиВ этой установке анод имеет более положительный потенциал, чем катод. Здесь, J1 и J3 вперед смещен, в то время как J2 в обратном смещении. Ток все еще не может течь через тиристор.
  3. Режим прямой проводки: В этой настройке анод и катод соединены как в режиме прямой блокировки. Однако теперь через тиристор течет ток. Этого можно было бы достичь двумя способами: если бы разность потенциалов между анодом и катодом была такой большой, то соединение J2 будет проходить пробой, позволяя течь через него. Если разность потенциалов недостаточно велика для возникновения пробоя, прямая проводимость также могла быть достигнута путем передачи прямого тока через затвор.

Если на затвор подается ток, а прямой ток в тиристоре достигает порогового значения тока, известного какзапирающий токтиристор будет продолжать проводить, даже если ток затвора удален. Как только тиристор начал проводить прямой ток, он может продолжать делать это, пока прямой ток выше порогового значения тока, известного какудерживающий ток, По этой причине тиристор можно использовать как выключатель. На рисунке ниже показана зависимость тока от напряжения для тиристора:

Характеристическая кривая зависимости тока от напряжения для тиристора.

Оцените статью
Topsamoe.ru
Добавить комментарий