Установка компенсаторов на трубопроводах систем отопления

Предельно допускаемое рабочее давление-1.6 Мпа
Осевая компенсирующая способность -40 мм:
— вариант 1 –растяжение 20мм; сжатие 20мм;
— вариант2 –растяжение 10мм, сжатие 30мм.

Компенсатор устойчив к воздействию температуры рабочей и окружающей среды:
вода — до плюс 150 0 С;
пар—до плюс 250 0 С.

Компенсатор должен быть устойчивым к воздействию относительной влажности воздуха до 95% при температуре окружающего воздуха 35 0 С и более низких температурах без конденсации влаги.

Средняя наработка на отказ компенсатора -1000 ч.
Средний срок службы -10 лет.

Меры безопасности
Источниками опасности при монтаже или эксплуатации компенсатора является рабочая среда, находящаяся под давлением.
Безопасность эксплуатации компенсатора должна обеспечиваться:
-прочностью и герметичностью компенсатора в соответствии с требованиями технических условий ;
— прочностью и герметичностью технологической магистрали;
— надежным креплением при монтаже на объекте , качеством сварного шва .

Все работы по монтажу и демонтажу компенсатора должны выполняться при полном отсутствии давления в технологической магистрали.

Монтаж
Монтаж производится в соответствии с проектом трубопровода, выполненным проектной организацией ,и осуществляется путем его приварки к трубопроводу.
Компенсаторы для систем отопления при монтаже необходимо устанавливать строго соосно с трубопроводом, без перекосов во избежание заедания и повреждение его подвижных частей.
Монтаж компенсаторов производится после установки на трубопроводе неподвижных опор, при монтаже вертикальных участков трубопроводов необходимо принимать меры, исключающие возможность сжатия и деформации компенсаторов под действием силы тяжести трубопроводов.

Хранение и транспортирование
Компенсаторы для систем отопления должен ы храниться в упаковке изготовителя при температуре окружающего воздуха от минус 20 до плюс 40 0 С и относительной влажности до 80%.
Воздух в помещении не должен содержать примесей паров и газов, вызывающих коррозию.
Компенсаторы для систем отопления мо гут транспортироваться всеми видами транспорта ( авиационным в герметизированных отсеках) в крытых транспортных средствах в соответствии с правилами перевозки грузов , действующими на транспорте конкретного вида.
Во время погрузочно-разгрузочных работ и транспортирования ящики не должны подвергаться резким ударам и воздействию атмосферных осадков.

Использование компенсатор ов в системах отопления высотных домов и многоэтажных зданий.

К системе отопления высотных жилых домов предъявляются самые жесткие требования , она должна быть долговечной и надежной. Для того чтобы дости ч этих результатов , в первую очередь необходимо применение качественны х труб, трубопроводной арматуры и компенсатор ов . Практика показывает, что в результате неверных расчетов, неправильно установленных компенсаторов или их полного отсутствия, применения низкокачественных материалов, даже совершенно новы й трубопровод не защищен от аварий.

Компенсаторы для систем отопления позволя ю т гасит ь ряд вибраций возникающих при работе трубопровод а и насосного оборудования , компенсировать движение трубопровода при изменении температуры проводимой или окружающей среды, влекущих за собой тепловое расширение вследствие нагрева рабочей средой , а также воспринимает на себя смещение труб при оседании почв и опор , значительно продлева я срок службы трубопровода.
У стройство соосто ит из гофрированной оболочки ( гибкого сильфона ) выполненого из многослойной нержавеющей стали. К омпенсирующая способность , о севой ход, зависит от количества сильфонов и количества гибких гофр в каждом сильфоне.
Рабоч ая сред а : вода, пар, воздух, природный газ, другие газы , жидкости, неагрессивные по отношению к материалам примененным в конструкци и устройства .
Н е предназначен для работы с рабочими средами, которые используются в химических, нефтехимических, нефтеперерабатывающих опасных производственных объектах.
К омпенсатор может быть изготовлен с внешним защитным кожухом , позволяющим защитить сильфон от внешних воздействий , а также внутренним экраном для защиты сильфона от воздествий рабочей среды.

Технология производства компенсаторов включает в себя изготовление и сборку следующих компонентов : 1) гофрированн ая часть компенсатора, число гофр которо й определяется заданным рабочим ходом — интервалом компенсации ( Исходной заготовкой является многослойный цилиндр из тонкого листа нержавеющей аустенитной стали 1.4541 или 1.4571 , Российский аналог 08X18H10T ); 2) Металлические патрубки под приварку (По заказу могут быть изготовлены для фланцевого присоединения); 3) Внутренняя гильза; 4) Защитный кожух (если предусмотрено техническими условиями).

Д ля всех типов компенсаторов диаметром до 1000мм сильфон изготавливается методом гидростатического выдавливания, Д ля диаметров свыше 1000 мм роликовым формированием ( накатыванием ) .
Верхний и нижний слои ( цилиндры ) , сваренные каждый продольным швом, обеспечивают герметичность. М ежду цилиндрами могут быть предусмотрены в нутренние слои, намотанные друг на друга и зафиксированные относительно внешних оболочек продольным сварным швом, их цель обеспечит ь силовую разгрузку будущего компенсатора.

В процессе изготовления к омпенсаторы для систем отопления проходят проверку, к ачество готового изделия определяется величинами отклонений процентного содержания спектра химических элементов стали от марочного их стандарта . Кроме того определяется аустенит ( структурн ая однородность ) используемого листа из стали 1.4541 . Т ехнологией сварки предусматривает обеспечение стабильности параметров электрической дуги на электродах при которой коэффициент свариваемости достигается равным еденице , что обеспечивает химическую и структурную однородность в сварном шве и в краях свариваемого листа нержаве ющей стали. Контроль осуществляется и за м етодикой формирования гофр сильфонн а при которой достигается одинаковая (1-1.5%) толщина стенки в любом месте профиля. Т ак же, необходимо о беспечиват ь , одинаков ую твердость сильфона по всему его профилю (для всех гофр). Это позволит гарантир овать равномерное распределение упругих свойств компенсатора и устойчивость к нагрузкам на растяжение сильфона , создаваемым внутренним давлением в трубопроводе, и к внешним нагрузкам на компенсатор, создаваемым температурными деформациями.

Использование компенсаторов в системах отопления позволяет обеспечить :
— компенсацию температурного расширения трубопроводов;
— компенсацию несоосности в трубопроводных системах, возникших вследствие монтажных работ;
— изол яцию вибрационны х нагруз о к от работающего оборудования;
— изол яцию вибрационны х нагруз о к от потока транспортируемой среды ;
— надежное соединение труб различного типа ;
— предотвращает разрушение труб при деформации трубопроводов;
— герметизирует трубопроводы;

Для защиты трубопровода от температурных расширений и деформаций возникающих при эксплуатации, традиционно применяются компенсаторы для систем отопления различных конструкций. Наибольшее распространение, благодаря простоте установки, надежности конструкции и долговечности получили Компенсаторы для систем отопления на основе металлического сильфона обеспеч ивающего безопасност ь отопительной системы на протяжении всего срока эксплуатации и не требующего постоянного контроля и обслуживания . Такие конструкции позволяют предотвратить различные деформации, которые возникают в труб опроводе из-за перепада температур и давления. В связи с тем, что на Компенсаторы для систем отопления возложена функция увеличения срок а службы системы отопления, их надежность должна обеспечиваться на протяжении всего срока эксплуатации трубопровода . О тсутствие компенс ирующих устройств в системах отопления приводит к нежелательным последствиям, значительным деформациям или прорыву отопительной системы , значительная часть таки х авари й зачастую происход и т зимой в разгар отопительного сезона.

Д о недавнего времени в системах отопления принялись устаревшие компенсирующие системы, такие как сальниковые , П , S, L -образные компенсаторы. Такие устройства просты и имеют сравнительно невысокую стоимость . П ри этом имеют целый ряд значительных недостатков: П , S, L -образные компенсаторы требуют выделения значительной площади для их установки , а сальниковые требуют периодического технического обслуживания и постоянного контроля, а при подземной прокладке постройки специальных камер. Таким образом первоначальная экономия на стоимости самих компенсаторов , влечет за собой потерю полезной площади, существенное увеличение стоимости монтажа и штата обслуживающего персонала .

Учитывая вышеперечисленные недостатки, наиболее оптимальным решением становится применение сильфонных компенсаторов, не требующих обслуживания. Рабочей частью таких устройств является сильфон из упруг ой гофрированн ой металлическ ой оболочк и , обладающ ей способностью растягиваться, сжиматься и изгибаться под действием перепада температур, давления , вибраций, движения почвы и механических воздействий . П рименение сильфонных компенсаторов при строительстве трубопроводов и реконстру кции отопительных систем высотных жилых домов позвол яет снизить риск возникновения причин влекущих за собой разрушение трубопровода. При этом сильфонные компенсаторы для систем отопления герметичны, компактны, долговечны и не требуют обслуживания в течение всего срока эксплуатации .

Расчет удлинения участка стального трубопровода проводится по формуле:
L= 0,012×Н×(T1-T2),
где:
0.012 мм/(м×С)- коэффициент температурного удлинения углеродистой стали.
Н м– высота трубы.
Т1 °С — максимальная температура воды в системе отопления.
Т2 °С- минимальная температура монтажа системы отопления.
L= 0,012* 30* (90- (-10))=36 мм.
При расчете компенсаторов в высотных домах применяются аналогичные вычисления. Например, для 20-ти этажного дома понадобится установить уже 3 сильфонных компенсатора на каждую трубу системы отопления.

Выбор компенсатора для систем отопления

Для стандартных систем отопления ( при 70-90º С) компенс ирующая способность рассчитывается как Δ=1 мм/м. Каждый компенсатор должен быть установлен между 2 неподвижными опорами для вертикального трубопровода длиной 30 м (10 этажное здание).
При выборе к омпенсатор а для систем отопления очень важно о предел ить рабочи е параметр ы и срок эксплуатации трубопровода. Для правильного выбора компенсатора и расчета времени работы , необходимо отталкива ться от количества циклов и длины компенсатора для систем ы отопления.
При этом следует учитывать, что компенсаторы для систем отопления на 50 циклов мо гут использоваться от одного до пяти лет, компенсатор ы для систем отопления на 1000 циклов мо гу т использоваться от пяти до пятнадцати лет, на 5000 циклов — не менее 25 лет , если условия эксплуатации не создают дополнительных нагрузок и окружающая среда не оказывает разрушающего воздействия на материалы компенсатора.
П олны м рабочи м цикл ом считается сжатие — растяжение компенсатора по оси , на всю величину допустимого хода. Например, если осевой ход составляет 210 мм для 5000 циклов, то осевой ход считается +/-105 мм .
Допустим в расчет тепловых сетей внесены компенсаторы для систем отопления:
Первый — компенсатор с сильфоном 1080 мм (предназначен не менее чем на 100 0 рабочих циклов);
В торой — компенсатор с сильфоном 630 мм (предназначен на 50 рабочих циклов).
Но в период эксплуатации, компенсатор не будет непрерывно работать на всю длину осевого хода , это будет зависеть от условий: температуры рабочей среды, скачков давления, и т. д . В случае когда к омпенсаторы для систем отопления не испытывают максимально возможных нагрузок , их осевые сжатия и расширения будут меньше чем +/-105 мм и, в следствие чего , период работы увеличится.
Величина осевого расширения — сжатия непосредственно связан а с количеством циклов срабатывания : чем больше один, тем меньше второй.
Например, компенсатор оснащенный сильфоном 630 мм с ходом на сжатие-расширение 210 мм (+/-105) отработает 50 рабочих циклов, но если он будет использоваться с о сжатием-расширением +/-95, то способен выполнит 75 рабочих циклов, когда он будет иметь ход +/-31,5 мм, то его ресурс увеличится до 5000 рабочих циклов.
Компенсатор с длинной сильфона 1080 мм с о сжатием-расширением 210 мм (+/-105) отработает 1000 рабочих циклов, но если он будет использоваться с о сжатием-расширением +/-95 мм , то отработает 1100 рабочих циклов, если величина срабатывания составит +/-31,5 мм, то его ресурс увеличится до 140000 рабочих циклов.
Поэтому перед заказом компенсаторов необходимо ознакомиться с условиями в которых может применяться компенсатор, а также вычислить запас необходимого осево го хода сильфона .

Предотвращение деформаций и разрушения трубопровода

Чтобы избежать температурных напряжений, возникающих в трубопроводах при тепловом удлинении, применяют устройства позволящие их компенсировать. Наибольшее распространение получили гнутыме П, S-образные конструкции и сальниковые компенсаторы. Кроме того, при грамотном расчете и монтаже, повороты трубопроводов могут играть роль L-образных компенсаторов на тепловой трассе.

Применение П, S и L -образных систем позволяет создавать компенсирующие устройства непосредственно на месте монтажа. Гнутые компенсаторы изготовливаются из отводов и прямых отрезков труб при помощи сварки. Диаметр, толщина стенки и марка стали труб для гнутых компенсаторов должны быть такие же, как и для основных участков трубопровода. Компенсационная способность таких конструкций колеблется в зависимости от диаметра трубопроводов, чем больше диаметр, тем больше компенсационная способность.
П-образные компесаторы, как правило, устанавливают в горизонтальном положении и в исключительных случаях верикально или наклонно. При установке таких компенсаторов ветрикально или наклонно в нижних точках с обоих сторон компенсаторов необходимо смонтировать дренажные штуцера для отвода конденсата, а в верхней части воздухоотводчики.
Для обеспечения нормальной работы П-образный компенсатор устанавливают не менее чем на трёх подвижных опорах. Две опоры располагают на прямых участках трубопровода, присоединяемых к компенсатору , учитывая, что при этом край опоры должен отстоять от сварного стыка не менее чем на 500мм, третью опору ставят по середине компенсатора, обычно на специльной колонне. Для предварительной растяжки П-образного компенсатора применяют приспособление, состоящее из двух хомутов, между которыми установлены винт и распорка с натяжной гайкой. Перед растяжкой замеряют длину компенсатора в свободном состоянии, а затем путём вращения гайки разводят его на необходимую длинну . Распорное приспособление устанавливают параллельно спинке компенсатора. В о избежани и перекоса , при растяжк е нельзя использовать стык , н епосредственно прилегающий к компенсатору. Для этой цели нужно оставлять зазор в соседнем стыке.
При подъёме компенсатор а его следует захватывать в трёх точках и ни в коем случае за распорное приспособление. Лишь после прихват а сваркой стыков и заркепления , к омпенсаторы для систем отопления отсоединяют от грузо-подъёмных устройств . Предварительно провери в надёжность установки распорного приспособления.
При групповом расположении П-образных компенсаторов параллельных трубопроводов предварительную растяжку заменяют натяжением трубопровода в холодном состоянии. В этом случае при установке компенсаторов трубопровод собирают обычным способом, но в одном из стыков (сварном или фланцевом) оставляют зазор, равный заданной величине растяжки компенсатора. Перед растяжкой следует убедиться в том, что все сварные стыки на данном участке заварены и окончательно закреплены неподвижные опоры.

Сальниковые компенсаторы изготовляют из труб, или листовой стали марки Ст.З. Устанавливают их строго по оси теплопровода, без перекосов. Они могут быть односторонними и двусторонними с увеличенной компенсирующей способностью в два раза больше, чем одностороннего. Основным недостатком таких устройств является применение в конструкции набивки сальникового типа, выполненной из асбестового прографиченного шнура и термостойкой резины. Такая система требует постоянного внимания и обслуживания.

Установка сальниковых компенсаторов или дополнительных изгибов трубопровода влекут за собой необходимость выделения под их установку значительных площадей и увеличение эксплуатационных затрат. Применение гнутых компенсаторов требует устройства специальных компенсаторных ниш, которые представляли из себя непроходной канал, по конфигурации соответствующей форме компенсатора (конструкция такого канала аналогична конструкции канала, применяемого на трассе тепловой сети). В связи с этим, при составлении проектов возникала необходимость минимизировать количество компенсаторов в системах отопления, максимально используя естественную самокомпенсирующую способность поворотов трубопроводов. Кроме того, гнутые компенсаторы применяют при давлении теплоносителя до 16 кгс/см2 при надземной прокладке труб всех диаметров. Во всех других случаях, а также при невозможности выделения дополнительной площади, приходилось применять сальниковые компенсаторы, которые в свою очередь требовали обеспечения возможности свободного доступа к конструкции для проведения своевременного обслуживания и контроля их состояния. Решить эту проблемы позволило применение сильфонов, лишенных выше перечисленных недостатков.

Компенсаторы для систем отопления должны распологаться на прямом участке трубопровода так, что бы этот участок оснащался с двух сторон неподвижными опорами, ограничивающими движение трубопровода в нежелательных направлениях. Между неподвижными опорами укладывают скользящие опоры, которые обеспечивают свободное перемещение при тепловом удлиннении.

Перед установкой компенсаторов в проектное положение необходимо проводить конроль путем внешн его осмотр а . В се к омпенсаторы для систем отопления , к ак правило пред окончательным присоединением к трубопроводу должны быть предварительно растянуты или сжаты на величину, указанную в проекте, и установлены на тру б опроводы вместе с распорным или сжимающим приспособлением, которое снимают только после окончательного крепления трубпорвод а на неподвижных опорах. Величина предварительной растяжки указывается в рекомендациях производителя и проектной документации .
Растяж ение применяют для систем отопления , а сжатие – для холодн ой воды . Работы по растяжк е или сжати ю называется холодным на т ягом трубпорвода и производ я тся с целью уменьшить напряжение в металле при тепловом удлинении или сжатии системы .
При растяжк е компенсаторов , независимо от способа её выполнения , составля ется акт, в котором указывают строительные длины компенсаторов до и после растяжки.

Фланцевый стык, оставленный для растяжки, сременно (без постоянных прокладок) стягивают удлинёнными шпильками, устанавлива их через одну и оставляя отверстия для постоянных болтов. Диаметр и количество шпилек для натяжения трубопроводов в холодном состоянии указывается в проекте.
После установки компенсаторов в проектное положение, сварки всех стыков (кроме одного) и закрепления трубопровода на всех неподвижных опорах по обе стороны компенсатора удаляют временное прокладочное кольцо и стягивают стяк для сварки путём затяжки гаек на удлинённых шпильках. При фланцевом соединении перед окончательной затяжкой устанавливают прокладку, предусмотренную в проект е . После затяжки фланцевого соединения постоянными болтами временные шпильки вынимают, и на их место устанавливают постоянные болты.

При монтаже вертикальных участков тепловой сети необходимо принимать меры, исключаюище возможность сжатия и дефомации компенсаторов под действием силы тяжести трубопровод а . В целях исключения подобных нагрузок, параллельно компенсаторам на трубопровдах приваривают скобы, которые срезают после завершения монтажа трубопровода.
При установке на трубопровод е нескольких компенсаторов в проекте предусм атриваются неподвижные опоры за каждым компенсатором, чтобы исключить возникновение прогиба трубопровода, находящегося в сжатом состоянии, и обеспечить равномерную деформацию всех компенсаторов, установленных на трубопроводе.
У компенсаторов перед установкой проверяют строительную длину; с помощью проставок и шпилек устанавливают зазор, соответствующий предварительной растяжке.
Осевые к омпенсаторы для систем отопления монтируют в такой последовательности :
— с начала приваривают одним концом к трубопроводу
— м ежду вторым концом и привариваемой трубой проверяют зазор, равный величине предварительной растяжки, производят растяжку с помощью имеющихся на нем гаек со шпильками, приваривают второй конец к трубопроводу, после чего удаляют шпильки и гайки.

Монтаж и установка компенсаторов трубопроводов

Трубопроводные системы при изменении режимов работы по перекачке рабочей среды или колебаний погодных условий подвергаются деформациям, называемыми температурными.

При нагреве стальных труб суммарной длиной 100 п.м., до температуры в 50 градусов Цельсия они могут вытягиваться на расстояние от 40 до 60 мм. Учитывая то, что те же магистральные трубопроводы тянутся на многие километры, то сумма удлинения, составляет серьезные цифры.

Тепловая деформация приводит к тому, что в системе появляются большие продольные усилия.

Они оказывают воздействие на фиксированные промежуточные опоры. Кроме того, возникающие воздействия не только разрушают опоры, но и приводят к прогибу труб. Все перечисленные избыточные усилия могут привести к тому, что существующие соединения (сварочные или фланцевые) могут быть повреждены.

Защита трубопроводных систем от излишних нагрузок

Защита трубопроводных систем от излишних нагрузок начинается на стадии проектирования. Проектировщики и конструкторы рассчитывают его таким образом, чтобы его составные части (трубы) имели возможность свободно изменять свою длину при перепадах температуры при этом система и ее составные части не должны испытывать дополнительных нагрузок.

Другими словами, трубопроводные системы, разумеется, правильно спроектированные, получают возможность изменять свои линейные размеры, но лишь в пределах допустимых нагрузок и без использования специального оборудования называют самокомпенсацией.

Она (самокомпенсация) может быть реализована только потому, что трубопровод состоит не только из прямых участков, как правило, между опорными точками размещают повороты или отводы.

Эти конструктивные элементы — повороты или отводы и помогают компенсировать колебания длины. Она напрямую связана с эластичностью конструкции на прямом участке, другая часть компенсируется за счет характеристик металла, который использован для производства труб.

Но заложить в проект возможность самокомпенсации не всегда представляется возможным или использовать ее в полном объеме нельзя, тогда в трубопроводной системе монтируют устройства, под названием компенсаторы.

В нашей компании освоен серийный выпуск следующих типов компенсационных изделий:

Особенности монтажа П-образных компенсаторов

Перед монтажом компенсационных устройств, на место, предусмотренное в конструкторской документации, необходимо выполнить его внешний осмотр. На поверхности изделия не может быть повреждений, замятий и других дефектов, которые могут оказать негативное влияние на их работоспособность.

Компенсационные изделия, перед началом их монтажа на место приводят в нагруженное состояние, то есть их или растягивают или сжимают на величину, определённую в проектной документации. Их монтаж выполняют совместно со вспомогательным устройством, обеспечивающим распор или сжатие. Устройство удаляют только после выполнения окончательной установки компенсационного устройства на проектное место. Размер предварительной натяжки или удлинения определяют на стадии проектирования.

Растяжку используют для горячих трубопроводных систем, а сжатие для холодных. Операция предварительной деформации компенсационных устройств называют — холодным натягом. Основная ее цель — снижение напряжений, появляющихся во время тепловой деформации трубопроводной системы.

Результаты предварительной деформации компенсационного устройства заносят в Акт. В нем указывают все строительные длины, устанавливаемых компенсационных устройств до и после нагружения.

Компенсационные изделия, выполненные в виде буквы П, монтируют в параллельно земле. Но при необходимости их могут устанавливать под определенным углом к горизонту или перпендикулярно к уровню земли. В нижних точках отводов необходимо врезать дренажные краны или штуцеры. В верхней части компенсационного изделия, в обязательном порядке, должны быть установлены воздухоотводяще клапаны.

П-образный компенсатор монтируют на трех опорах. Две из них должны быть установлены на прямом участке трубопроводной системы, стыкующейся с компенсационным изделием. Между опорой и стыком должно быть оставлено не меньше 0,5 м. Третью опору устанавливают под спину устройства для компенсации, для этого сооружают специальную конструкцию в виде колонны.

Предварительное нагружение П-образного компенсационного изделия выполняют при помощи специального технологического приспособления, в состав которого входят два хомута. Между ними устанавливают винт и распорку.

Прежде чем привести компенсационное изделие в рабочее состояние, необходимо выполнить замер длины компенсатора в свободном положении. После этого, на заранее установленном приспособлении, проворачивают гайку. Таким образом, выполняется приведение компенсатора в рабочее состояние. В проекте должен быть показан стык, рядом с которым будет выполнено растяжение компенсационного устройства. Если в рабочей документации нет каких-либо отметок, то надо помнить, что установка растяжки рядом со стыком, расположенным рядом с компенсатором недопустимо.

При выполнении погрузочно-разгрузочных работ компенсатор разрешено поднимать только по трем точкам. Выполнять подъём компенсационного устройства за распорное устройство категорически запрещено. Освобождение компенсатора от грузозахватных приспособлений допустимо выполнять только после того, выполнена прихватка стыков. Компенсационные устройства устанавливают в рабочее положения с помощью одного или двух подъемных кранов.

В некоторых случаях, например, тогда, когда компенсаторы П-образной формы, расположены параллельно между собой, вместо их растяжения выполняют натяжение. То есть, на месте где должен располагаться сварной или фланцевый стык, оставляют зазор. Его размер должен равняться длине растягивание компенсационного изделия. Перед тем как начать растяжку необходимо убедиться в том, что на данном участке трубопровода сварены и готовы к эксплуатации все стыки.

Особенности монтажа линзовых компенсационных устройств

При монтаже линзовых компенсаторов необходимо отслеживать расположение дренажных устройств, это могут быть штуцеры или краны. Кроме того, направляющий стакан должен быть установлен по оси движения перемещаемой рабочей среды.

Линзовые компенсационные устройства целесообразно устанавливать в трубах, узлах или блоках до того, как их установят в предусмотренное конструкторской документацией положение. При транспортировке, хранении готового с линзового компенсационного устройства необходимо обеспечить сохранность изделия. Для этого используют специальные приспособления их называют жесткость. После монтажа готового изделия их надо удалить.

Во время сборки трубопроводов, расположенных в вертикальной плоскости, монтажники должны приварить скобы, устанавливаемые параллельно компенсатору и срезаемые по окончании работ.

Перед монтажом линзовые компенсационные устройства должны быть растянуты на половину их способности выбирать температурную деформацию.

Эти изделия могут быть растянуты и во время монтажа, по окончании сварочных работ или сборки на фланцах. Кроме того, должны быть смонтированы все стационарные опоры, подвесные устройства и пр.

В таком случае растяжку компенсаторов выполняют путем его притягивания к ближайшему, специально подготовленному стыку.

Сжатие изделия проводят после того как оно окончательно связано с трубопроводом, до того, пока оно не закреплено на стационарных опорах. Для манипуляций с компенсационным устройством используют приспособление, в состав которого входят — два хомута и удлиненные шпильки.

При установке в трубопроводной системе нескольких компенсаторов проектировщики обязаны предусмотреть наличие стационарных опор, располагаемых за устанавливаемым изделием. Такой подход позволяет предупредить прогиб трубопроводной линии, находящейся в нагруженном состоянии. Такой подход обеспечит равномерную деформацию всех, смонтированных на этом участке компенсационных изделий. Все дело в том, у каждого линзового компенсатора собственные параметры жесткости.

У линзовых, их иногда называют волнистыми, компенсаторов перед монтажом необходимо проверить строительную длину, затем выставляют зазор, который должен соответствует предварительному нагружению (растяжке).

Монтаж других компенсационных устройств

Компенсационные изделия осевого типа устанавливают в определённой очередности. На первом этапе их фиксируют с помощью сварки одним концом к трубе. Между противоположной стороной и торцом трубы оставляют зазор, который равен длине заранее выполненной растяжки. Для операции растяжки компенсационного изделия применяют метизы различной формы (гайки, шпильки). При монтаже шарнирных компенсационных устройств их сваривают во соответствии со схемой монтажа, при этом болты, скрепляющие щеки шарниров, не снимают.

Их демонтируют после проверки длины зазоров между стыками и затягивания крепежных изделий

Компенсаторные изделия сальникового типа требуют обеспечения соосности со стыкуемыми трубами. Смещение осей при монтаже недопустимо, в противном случае может произойти заклинивание движущихся частей или выход из строя набивки компенсационного устройства. Направляющие, которые установлены на трубы обживают ее, и таким образом, происходит центрирование труб в разных плоскостях.

© 2019 ООО «ХимТеплоМаш». Производство нестандартного оборудования.
Предложения на сайте носят информационный характер и не являются публичной офертой.

И наш менеджер свяжется с вами в течение 10 минут

Наш менеджер перезвонит вам в ближайшее время.

В процессе эксплуатации трубопроводы испытывают механические и тепловые воздействия, которые сокращают срок службы, а порой провоцируют разрывы. Для увеличения надежности и предотвращения аварийных ситуаций используются специальные устройства – компенсаторы. Особенно актуально их применение на коммуникациях из полипропиленовых труб, прочность которых ниже, чем у стальных аналогов.

Что такое компенсаторы

При изменении температуры у трубопроводов происходит линейная деформация. Чтобы ее компенсировать, на коммуникациях устанавливаются гибкие элементы. Они за счет своей упругости возмещают температурное расширение и часть давления при его резком повышении, возвращаясь к первоначальному виду после прекращения воздействия. Устройства для полипропиленовых труб обычно изготавливаются в форме петли, но в зависимости от условий прокладки применяются и другие конструкции. Такие изделия можно приобрести в магазине или изготовить самостоятельно.

Какой вариант лучше установить на полипропилен

Ассортимент устройств, предлагаемый изготовителями, позволяет подобрать нужный тип для полипропиленовых трубопроводов любого назначения и способа прокладки. В зависимости от условий применения используются:

  1. Осевые компенсаторы сильфонного типа, предназначенные для работы в системах отопления и горячего водоснабжения. С трубами соединяются с помощью муфт. Сильфон из тонкой нержавеющей стали выдерживает давление до 16 атмосфер при температуре 115 ⁰C.
  2. Сдвиговые устройства с двумя гофрами – компенсируют тепловое расширение одновременно по 2 направлениям.
  3. Поворотные – применяются в местах изменения линии трубопровода на 90⁰.
  4. Универсальные разновидности – используются на небольших участках с отводами. Компенсируют поперечные, угловые, осевые смещения. Устанавливаются там, где использовать другие виды нет возможности.
  5. Фланцевые компенсаторы из мягких материалов – предназначены для смягчения гидроударов. Сгладят небольшие огрехи, допущенные в процессе прокладки труб. Легко устанавливаются и заменяются, так как при монтаже не требуется сварка.
  6. Компенсаторы в виде змеевиков.
  7. Петлеобразные – наиболее простые. Их нетрудно изготовить самостоятельно из отрезка полипропиленовой трубы. Несмотря на незамысловатость конструкции, успешно выполняют те же функции, что и заводские аналоги, но занимает больше места.

Монтаж: расчеты и требования

У полипропиленовых труб с алюминиевым армированием коэффициент теплового расширения равен 3×10⁻⁵ 1/°С, а у обычных – 15×10⁻⁵ 1/°С. Из этого следует, что изменение температуры на 10 ⁰C увеличивает длину в первом случае на 0,3, а во втором – на 1,5 мм. Зная протяженность трубы и пределы изменения ее температуры, несложно подсчитать, на сколько она удлинится.

Предположим, система отопления монтируется при температуре 20 ⁰C, нагреваться она будет до 100 ⁰C. Получившаяся разница в 80 ⁰C заставит каждый метр армированных труб увеличиться на 0,3×8=2,4 мм, а обычных – на 1,5×8=12 мм. Если их длина 10 м, общий прирост составит 2,4×10=24 мм и 12×10=120 мм.

Для коммуникаций, предназначенных работать в условиях сильного нагрева, следует выбирать трубы с минимальным линейным расширением. Подойдут варианты, армированные алюминием или этиленвиниловым спиртом. Для подачи холодной воды можно использовать обычные полипропиленовые трубы, поскольку величина изменения температуры невелика. Максимальный перепад составляет 20 ⁰C в холодное время года, если они проходят по неотапливаемому подвалу.

Теплые полы монтируются в стяжках при 16-20 ⁰C, максимальная температура нагрева санитарными нормами допускается до 55 ⁰C. При такой разнице допустимо использование обычных труб. Несмотря на то что тепловое расширение изделий в стяжках и под штукатуркой гасится окружающим материалом, армированные варианты более надежны. Лучше подстраховаться, чтобы потом не долбить пол и стены.

Коммуникации, прокладываемые под штукатуркой, должны закрываться кожухами из вспененного полиуретана или полиэтилена. Этот метод называется «труба в трубе». Его применение снижает потери тепла на нагрев стен, а эластичность кожуха позволяет изделиям расширяться, разгружая тем самым внутреннее напряжение.

Полипропиленовые коммуникации крепятся к стенам на жестких и подвижных опорах. Первые не позволяют изделиям удлиняться при тепловом расширении. Они используются для разбивки водопровода на компенсационные участки. Для защиты стояка от проседания его жестко крепят под тройниками, у отводов и муфт, соединяющих трубы. На середине, между неподвижными креплениями, устанавливаются компенсаторы.

Второй вид крепежа не препятствует удлинению изделий при температурном расширении. С его помощью можно смонтировать коммуникацию, избежав проседания стояка. Поскольку при таком способе ничто не мешает движению труб, установка компенсаторов необязательна.

Прокладывая коммуникации в шахте или канале, необходимо предусматривать компенсацию температурного сдвига на ответвлениях. Ее можно осуществить путем добавления плеча изгиба, если расположить коммуникацию дальше от стены. Увеличение отверстия до размеров, достаточных для свободного перемещения отвода, или установка Г-образного компенсатора также решают проблему. Точки жесткого крепления стояка в шахте и канале должны располагаться на расстоянии не больше 3 метров между ними. На прямых участках коммуникаций из неармированных труб длиной более 10 м компенсаторы обязательно устанавливаются на стояках и отводах.

Чем опасно тепловое расширение

В результате ошибок проектирования, когда не учитывается температурное расширение трубопровода, его участки при нагреве отклоняются в стороны, создавая волнообразную форму. При этом уровень шума от текущей жидкости значительно усиливается. В результате видоизменения труб происходит:

  • разрушение опор крепления;
  • снижение пропускной способности из-за скопления воздуха в верхних точках;
  • падение температуры радиаторов отопления;
  • образование трещин на изгибах и утечек через них.

Заключение

Выбирая компенсаторы, предпочтение следует отдавать моделям, которые устанавливаются с помощью сварки – она обеспечивает высокую надежность стыка. Фланцевые крепления сложно монтировать из-за необходимости установки на полипропилен металлических деталей, что по силам только мастерам. Резьбовые соединения не отличаются высокой надежностью. Системы отопления и горячего водоснабжения лучше собирать из армированных труб при любом методе монтажа. В отличие от обыкновенных, они избавят от необходимости придумывать способы компенсации линейного расширения.

Оцените статью
Topsamoe.ru
Добавить комментарий