Uc3842 блок питания с оптопарой

Схема представляет собой классический обратноходовый БП на базе ШИМ UC3842. Поскольку схема базовая, выходные параметры БП могут быть легко пересчитаны на необходимые. В качестве примера для рассмотрения выбран БП для ноутбука с питанием 20В 3А. При необходимости можно получить несколько напряжений, независимых или связанных.

Выходная мощность на открытом воздухе 60Вт (длительно). Зависит главным образом от параметров силового трансформатора. При их изменении можно получить выходную мощность до 100Вт в данном типоразмере сердечника. Рабочая частота блока выбрана 29кГц и может быть перестроена конденсатором С1. Блок питания рассчитан на неизменяющуюся или мало меняющуюся нагрузку, отсюда отсутствие стабилизации выходного напряжения, хотя оно стабильно при колебаниях сети 190. 240вольт. БП работает без нагрузки, есть настраиваемая защита от к/з. КПД блока – 87%. Внешнего управления нет, но можно ввести с помощью оптопары или реле.

Силовой трансформатор (каркас с сердечником), выходной дроссель и дроссель по сети заимствованы с компьютерного БП. Первичная обмотка силового трансформатора содержит 60витков, обмотка на питание микросхемы – 10витков. Обе обмотки наматываются виток к витку проводом 0,5мм с одинарной межслойной изоляцией из фторопластовой ленты. Первичная и вторичная обмотки разделяются несколькими слоями изоляции. Вторичная обмотка пересчитывается из расчета 1,5вольта на виток. К примеру, 15вольтовая обмотка будет 10витков, 30вольтовая – 20 и т.д. Поскольку напряжение одного витка достаточно велико, при малых выходных напряжениях потребуется точная подстройка резистором R3 в пределах 15. 30кОм.

Настройка
При необходимости получить несколько напряжений можно воспользоваться схемами (1), (2) или (3). Числа витков считаются отдельно для каждой обмотки в (1), (3), а (2) – иначе. Поскольку вторая обмотка является продолжением первой, то число витков второй обмотки определяется как W2=(U2-U1)/1.5, где 1.5 – напряжение одного витка. Резистор R7 определяет порог ограничения выходного тока БП, а также максимальный ток стока силового транзистора. Рекомендуется выбирать максимальный ток стока не более 1/3 паспортного на данный транзистор. Ток можно высчитать по формуле I(Ампер)=1/R7(Ом).

Сборка
Силовой транзистор и выпрямительный диод во вторичной цепи устанавливаются на радиаторы. Их площадь не приводится, т.к. для каждого варианта исполнения (в корпусе, без корпуса, высокое выходное напряжение, низкое, и.т.д.) площадь будет отличаться. Необходимую площадь радиатора можно установить экспериментально, по температуре радиатора во время работы. Фланцы деталей не должны нагреваться выше 70градусов. Силовой транзистор устанавливается через изолирующую прокладку, диод – без неё.

ВНИМАНИЕ!
Соблюдайте указанные значения напряжений конденсаторов и мощностей резисторов, а также фазировку обмоток трансформатора. При неверной фазировке блок питания заведется, но мощности не отдаст.
Не касайтесь стока (фланца) силового транзистора при работающем БП! На стоке присутствует выброс напряжения до 500вольт.

Замена элементов
Вместо 3N80 можно применить BUZ90, IRFBC40 и другие. Диод D3 – КД636, КД213, BYV28 на напряжение не менее 3Uвых и на соответствующий ток.

Запуск
Блок заводится через 2-3 секунды после подачи сетевого напряжения. Для защиты от выгорания элементов при неверном монтаже первый запуск БП производится через мощный резистор 100 Ом 50Вт, включенный перед сетевым выпрямителем. Также желательно перед первым запуском заменить сглаживающий конденсатор после моста на меньшую емкость (около 10. 22мкФ 400В). Блок включают на несколько секунд, потом выключают и оценивают нагрев силовых элементов. Далее время работы постепенно увеличивают, и в случае удачных запусков блок включается напрямую без резистора со штатным конденсатором.

Ну и последнее.
Описываемый БП собран в корпусе МастерКит BOX G-010. В нем держит нагрузку 40Вт, на большей мощности необходимо позаботиться о дополнительном охлаждении. В случае выхода БП из строя вылетает Q1, R7, 3842, R6, могут погореть C3 и R5.

ШИМ-контроллеры – достаточно популярный элемент в схемах импульсных блоков питания. Они способствуют повышению КПД конечного устройства, выступают в роли задающего генератора.

Микросхема UC 3842 реализует ШИМ-контроллер с обратной связью, построенный на базе полевых транзисторов.

Структурная схема (может пригодиться для глубокого понимания принципа работы) выглядит следующим образом.

Рис. 1. Структурная схема

Может поставляться в 16-ти или 8-пиновых корпусах. Распиновка для первого типа будет выглядеть так.

Рис. 2. Распиновка для первого типа

Производителем предполагается несколько вариантов использования данной ИМС, например, в качестве:

  • Генератора импульсов;
  • Усилителя сигнала ошибки;
  • Элемента организации обратной связи по току;
  • Выключателя по уровню напряжения;
  • И т.д.

Но самое популярное – построение преобразователей тока и блоков питания.

Простейшая схема, рекомендуемая производителем (можно найти в даташите), выглядит так.

Рис. 3. Простейшая схема, рекомендуемая производителем

Как и всегда с импульсными БП, здесь придётся повозиться с намоткой трансформатора.

Для расчёта его параметров необходимо использовать специальный софт (для непрофессионалов так будет проще и быстрее). Например – Flyback 8.1 и т.п.

В промышленных БП, собранных на той же микросхеме, часто используется типовая схема. Она ниже.

Рис. 4. Типовая схема

Ещё одна проверенная схема.

Рис. 5. Ти повая схема

Реальные БП, собранные по ней, могут длительно отдавать мощность до 60 Вт (20 В, 3 А). При перекомпоновке трансформатора можно добиться и более высокого показателя.

Читайте также:  Какие садовые дома нужно регистрировать

Трансформатор можно намотать на сердечнике, взятом из компьютерного БП, например, из сломанного. Но можно рассчитать и намотать с нуля.

Еще одна схема, но на базе аналогичной микросхемы (из той же серии) – UC3844.

Рис. 6. Схема на базе микросхемы UC3844

Работает она на частоте 100 кГц, обеспечивает выходное напряжение 12 В и силу тока 2 А (24 Вт в итоге). Допускаются колебания входного напряжения с отклонением до 20% от номинала (будет работать даже от напряжения в 175 В).

Номиналы и подробную инструкцию по намотке трансформатора можно найти в этом файле.

UC3844 можно легко заменить на UC3842, но перед этим нужно согласовать рабочую частоту. Это делается за счёт конденсатора в колебательном контуре.

Мнения читателей
  • Владимир / 09.11.2019 – 07:08
    Номиналы и подробную инструкцию по намотке трансформатора можно найти в этом файле. Эта сноска битая.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

Микросхема ШИМ-контроллера UC3842 является самой распространенной при построении блоков питания мониторов. Кроме того, эти микросхемы применяются для построения импульсных регуляторов напряжения в блоках строчной развертки мониторов, которые являются и стабилизаторами высоких напряжений и схемами коррекции растра. Микросхема UC3842 часто используется для управления ключевым транзистором в системных блоках питания (однотактных) и в блоках питания печатающих устройств. Одним словом, эта статья будет интересна абсолютно всем специалистам, так или иначе связанным с источниками питания.

Выход из строя микросхемы UC 3842 на практике происходит довольно часто. Причем, как показывает статистика таких отказов, причиной неисправности микросхемы становится пробой мощного полевого транзистора, которым управляет данная микросхема. Поэтому при замене силового транзистора блока питания в случае его неисправности, настоятельно рекомендуется проводить проверку управляющей микросхемы UC 3842.

Существует несколько методик проверки и диагностики микросхемы, но наиболее эффективными и простыми для применения на практике в условиях слабо оснащенной мастерской являются проверка выходного сопротивления и моделирование работы микросхемы с применением внешнего источника питания.

Для этой работы потребуются следующие приборы:

  • 1) мультиметр (вольтметр и омметр);
  • 2) осциллограф;
  • 3) стабилизированный источник питания (источник тока), желательно регулируемый с напряжением до 20-30 В.
  • Можно выделить два основных способа проверки исправности микросхемы:

  • проверка выходного сопротивления микросхемы;
  • моделирование работы микросхемы.
  • Функциональная схема приводится на рис.1, а расположение и назначение контактов на рис.2.

    Проверка выходного сопротивления микросхемы

    Очень точную информацию об исправности микросхемы дает ее выходное сопротивление, так как при пробоях силового транзистора высоковольтный импульс напряжения прикладывается именно к выходному каскаду микросхемы, что в итоге и служит причиной ее выхода из строя.

    Выходное сопротивление микросхемы должно быть бесконечно большим, так как ее выходной каскад представляет собой квазикомплиментарный усилитель.

    Проверить выходное сопротивление можно омметром между контактами 5 (GND) и 6 (OUT) микросхемы (рис.3), причем полярность подключения измерительного прибора не имеет значения. Такое измерение лучше производить при выпаянной микросхеме. В случае пробоя микросхемы это сопротивление становится равным нескольким Ом.

    Если же измерять выходное сопротивление, не выпаивая микросхему, то необходимо предварительно выпаять неисправный транзистор, так как в этом случае может "звониться" его пробитый переход "затвор-исток". Кроме того, при этом следует учесть, что обычно в схеме имеется согласующий резистор, включаемый между выходом микросхемы и "корпусом". Поэтому у исправной микросхемы при проверке может появиться выходное сопротивление. Хотя, оно обычно не бывает меньше 1 кОм.

    Таким образом, если выходное сопротивление микросхемы очень мало или имеет значение близкое к нулю, то ее можно считать неисправной.

    Моделирование работы микросхемы

    Такая проверка проводится без выпаивания микросхемы из блока питания. Блок питания перед проведением диагностики необходимо выключить!

    Суть проверки заключается в подаче питания на микросхему от внешнего источника и анализе ее характерных сигналов (амплитуды и формы) с помощью осциллографа и вольтметра.

    Порядок работы включает в себя следующие шаги:

      1) Отключить монитор от сети переменного тока (отсоединить сетевой кабель).
      2) От внешнего стабилизированного источника тока подать на контакт 7 микросхемы питающее напряжение более 16В (например, 17-18 В). При этом микросхема должна запуститься. Если питающее напряжение будет менее 16 В, то микросхема не запустится.
      3) С помощью вольтметра (или осциллографа) измерить напряжение на контакте 8 (VREF) микросхемы. Там должно быть опорное стабилизированное напряжение +5 В постоянного тока.
      4) Изменяя выходное напряжение внешнего источника тока, убедиться в стабильности напряжения на контакте 8. (Напряжение источника тока можно изменять от 11 В до 30 В, при дальнейшем уменьшении или увеличении напряжения микросхема будет отключаться, и напряжение на контакте 8 будет пропадать).
      5) Осциллографом проверить сигнал на контакте 4 (CR). В случае исправной микросхемы и ее внешних цепей на этом контакте будет линейно изменяющееся напряжение (пилообразной формы).
      6) Изменяя выходное напряжение внешнего источника тока, убедитесь в стабильности амплитуды и частоты пилообразного напряжения на контакте 4.
      7) Осциллографом проверить наличие импульсов прямоугольной формы на контакте 6 (OUT) микросхемы (выходные управляющие импульсы).

    Если все указанные сигналы присутствуют и ведут себя в соответствии с вышеприведенными правилами, то можно сделать вывод об исправности микросхемы и ее правильном функционировании.

    Читайте также:  Как выбрать строительный фен для домашнего использования

    В заключение хочется отметить, что на практике стоит проверить исправность не только микросхемы, но и элементов ее выходных цепей (рис.3). В первую очередь это резисторы R1 и R2, диод D1, стабилитрон ZD1, резисторы R3и R4, которые формируют сигнал токовой защиты. Эти элементы часто оказываются неисправными при пробоях

    Импульсные источники питания на основе микросхемы UC3842

    Статья посвящена устройству, ремонту и доработке источников питания широкого спектра аппаратуры, выполненных на основе микросхемы UC3842. Некоторые приводимые сведения получены автором в результате личного опыта и помогут Вам не только избежать ошибок и сберечь время при ремонте, но и повысить надежность источника питания. Начиная со второй половины 90-х годов выпущено огромное количество телевизоров, видеомониторов, факсов и других устройств, в источниках питания (ИП) которых применяется интегральная микросхема UC3842 (далее – ИС). По видимому, это объясняется ее невысокой стоимостью, малым количеством дискретных элементов, нужных для ее «обвеса» и, наконец, достаточно стабильными характеристиками ИС, что тоже немаловажно. Варианты этой ИС, выпускаемые разными производителями, могут отличаться префиксами, но обязательно содержат ядро 3842.

    ИС UC3842 выпускается в корпусах SOIC-8 и SOIC-14, но в подавляющем большинстве случаев встречается ее модификация в корпусе DIP-8. На рис. 1 представлена цоколевка, а на рис. 2 – ее структурная схема и типовая схема ИП. Нумерация выводов дана для корпусов с восемью выводами, в скобках даны номера выводов для корпуса SOIC-14. Следует заметить, что между двумя вариантами исполнения ИС имеются незначительные различия. Так, вариант в корпусе SOIC-14 имеет отдельные выводы питания и земли для выходного каскада.

    Микросхема UC3842 предназначена для построения на ее основе стабилизированных импульсных ИП с широтно-импульсной модуляцией (ШИМ). Поскольку мощность выходного каскада ИС сравнительно невелика, а амплитуда выходного сигнала может достигать напряжения питания микросхемы, то в качестве ключа совместно с этой ИС применяется n-канальный МОП транзистор.

    Рассмотрим подробнее назначение выводов ИС для наиболее часто встречающегося восьмивыводного корпуса.

    1. Comp: этот вывод подключен к выходу усилителя ошибки компенсации. Для нормальной работы ИС необходимо скомпенсировать АЧХ усилителя ошибки, с этой целью к указанному выводу обычно подключается конденсатор емкостью около 100 пФ, второй вывод которого соединен с выводом 2 ИС.
    2. Vfb: вход обратной связи. Напряжение на этом выводе сравнивается с образцовым, формируемым внутри ИС. Результат сравнения модулирует скважность выходных импульсов, стабилизируя, таким образом, выходное напряжение ИП.
    3. C/S: сигнал ограничения тока. Данный вывод должен быть присоединен к резистору в цепи истока ключевого транзистора (КТ). При повышении тока через КТ (например, в случае перегрузки ИП) напряжение на этом резисторе увеличивается и, после достижения порогового значения, прекращает работу ИС и переводит КТ в закрытое состояние.
    4. Rt/Ct: вывод, предназначенный для подключения времязадающей RC-цепочки. Рабочая частота внутреннего генератора устанавливается подсоединением резистора R к опорному напряжению Vref и конденсатора С (как правило, емкостью около 3 000 пФ) к общему выводу. Эта частота может быть изменена в достаточно широких пределах, сверху она ограничивается быстродействием КТ, а снизу – мощностью импульсного трансформатора, которая падает с уменьшением частоты. Практически частота выбирается в диапазоне 35…85 кГц, но иногда ИП вполне нормально работает и при значительно большей или значительно меньшей частоте. Следует заметить, что в качестве времязадающего должен применяться конденсатор с возможно большим сопротивлением постоянному току. В практике автора встречались экземпляры ИС, которые вообще отказывались запускаться при использовании в качестве времязадающего некоторых типов керамических конденсаторов.
    5. Gnd: общий вывод. Следует заметить, что общий провод ИП ни в коем случае не должен быть соединен с общим проводом устройства, в котором он применяется.
    6. Out: выход ИС, подключается к затвору КТ через резистор или параллельно соединенные резистор и диод (анодом к затвору).
    7. Vcc: вход питания ИС. Рассматриваемая ИС имеет некоторые весьма существенные особенности, связанные с питанием, которые будут объяснены при рассмотрении типовой схемы включения ИС.
    8. Vref: выход внутреннего источника опорного напряжения, его выходной ток до 50 мА, напряжение 5 В.

    Источник образцового напряжения используется для подключения к нему одного из плеч резистивного делителя, предназначенного для оперативной регулировки выходного напряжения ИП, а также для подключения времязадающего резистора.

    Рассмотрим теперь типовую схему включения ИС, представленную на рис. 2.

    Как видно из принципиальной схемы, ИП рассчитан на напряжение сети 115 В. Несомненным достоинством данного типа ИП является то, что его с минимальными доработками можно использовать в сети с напряжением 220 В, надо лишь:

    • заменить диодный мост, включенный на входе ИП на аналогичный, но с обратным напряжением 400 В;
    • заменить электролитический конденсатор фильтра питания, включенный после диодного моста, на равный по емкости, но с рабочим напряжением 400 В;
    • увеличить номинал резистора R2 до 75…80 кОм;
    • проверить КТ на допустимое напряжение сток-исток, которое должно составлять не менее 600 В. Как правило, даже в ИП, предназначенных для работы в сети 115 В, применяются КТ, способные работать в сети 220 В, но, конечно, возможны исключения. Если КТ необходимо заменить, автор рекомендует BUZ90.
    Читайте также:  Кухонный гарнитур с полочками

    Как уже упоминалось ранее, ИС имеет некоторые особенности, связанные с ее питанием. Рассмотрим их подробнее. В первый момент после включения ИП в сеть внутренний генератор ИС еще не работает, и в этом режиме она потребляет от цепей питания очень маленький ток. Для питания ИС, находящейся в этом режиме, достаточно напряжения, получаемого с резистора R2 и накопленного на конденсаторе C2. Когда напряжение на этих конденсаторах достигает значения 16…18 В, запускается генератор ИС, и она начинает формировать на выходе импульсы управления КТ. На вторичных обмотках трансформатора Т1, в том числе и на обмотке 3-4, появляется напряжение. Это напряжение выпрямляется импульсным диодом D3, фильтруется конденсатором C3, и через диод D2 подается в цепь питания ИС. Как правило, в цепь питания включается стабилитрон D1, ограничивающий напряжение на уровне 18…22 В. После того, как ИС вошла в рабочий режим, она начинает отслеживать изменения своего питающего напряжения, которое через делитель R3, R4 подается на вход обратной связи Vfb. Стабилизируя собственное напряжение питания, ИС фактически стабилизирует и все остальные напряжения, снимаемые со вторичных обмоток импульсного трансформатора.

    При замыканиях в цепях вторичных обмоток, например, в результате пробоя электролитических конденсаторов или диодов, резко возрастают потери энергии в импульсном трансформаторе. В результате напряжения, получаемого с обмотки 3-4, недостаточно для поддержания нормальной работы ИС. Внутренний генератор отключается, на выходе ИС появляется напряжение низкого уровня, переводящее КТ в закрытое состояние, и микросхема оказывается вновь в режиме низкого потребления энергии. Через некоторое время ее напряжение питания возрастает до уровня, достаточного для запуска внутреннего генератора, и процесс повторяется. Из трансформатора в этом случае слышны характерные щелчки (цыканье), период повторения которых определяется номиналами конденсатора C2 и резистора R2.

    При ремонте ИП иногда возникают ситуации, когда из трансформатора слышно характерное цыканье, но тщательная проверка вторичных цепей показывает, что короткое замыкание в них отсутствует. В этом случае надо проверить цепи питания самой ИС. Например, в практике автора были случаи, когда был пробит конденсатор C3. Частой причиной такого поведения ИП является обрыв выпрямительного диода D3 или диода развязки D2.

    При пробое мощного КТ его, как правило, приходится менять вместе с ИС. Дело в том, что затвор КТ подключен к выходу ИС через резистор весьма небольшого номинала, и при пробое КТ на выход ИС попадает высокое напряжение с первичной обмотки трансформатора. Автор категорически рекомендует при неисправности КТ менять его вместе с ИС, благо, стоимость ее невысока. В противном случае, есть риск «убить» и новый КТ, т. к., если на его затворе будет длительное время присутствовать высокий уровень напряжения с пробитого выхода ИС, то он выйдет из строя из-за перегрева.

    Были замечены еще некоторые особенности этой ИС. В частности, при пробое КТ очень часто выгорает резистор R10 в цепи истока. При замене этого резистора следует придерживаться номинала 0,33…0,5 Ом. Особенно опасно завышение номинала резистора. В этом случае, как показала практика, при первом же включении ИП в сеть и микросхема, и транзистор выходят из строя.

    В некоторых случаях отказ ИП происходит из-за пробоя стабилитрона D1 в цепи питания ИС. В этом случае ИС и КТ, как правило, остаются исправными, необходимо только заменить стабилитрон. В случае же обрыва стабилитрона часто выходят из строя как сама ИС, так и КТ. Для замены автор рекомендует использовать отечественные стабилитроны КС522 в металлическом корпусе. Выкусив или выпаяв неисправный штатный стабилитрон, можно напаять КС522 анодом к выводу 5 ИС, катодом к выводу 7 ИС. Как правило, после такой замены аналогичные неисправности более не возникают.

    Следует обратить внимание на исправность потенциометра, используемого для регулировки выходного напряжения ИП, если таковой имеется в схеме. В приведенной схеме его нет, но его не трудно ввести, включив в разрыв резисторов R3 и R4. Вывод 2 ИС надо подключить к движку этого потенциометра. Замечу, что в некоторых случаях такая доработка бывает просто необходима. Иногда после замены ИС выходные напряжения ИП оказываются завышены или занижены, а регулировка отсутствует. В этом случае можно либо включить потенциометр, как указывалось выше, либо подобрать номинал резистора R3.

    По наблюдению автора, если в ИП использованы высококачественные компоненты, и он не эксплуатируется в предельных режимах, надежность его достаточно высока. В некоторых случаях надежность ИП можно повысить, применив резистор R1 несколько большего номинала, например, 10…15 Ом. В этом случае переходные процессы при включении питания протекают гораздо более спокойно. В видеомониторах и телевизорах это нужно проделывать, не затрагивая цепь размагничивания кинескопа, т. е. резистор ни в коем случае нельзя включать в разрыв общей цепи питания, а лишь в цепь подключения собственно ИП.

    Алексей Калинин
    "Ремонт электронной техники"

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Adblock detector