Транзистор с двумя эмиттерами

В процессе развития микроэлектроники появились некоторые разновидности n-p-n- транзисторов, не свойственные дискретным электронным схемам и не выпускаемые в виде дискретных приборов. Рассмотрим некоторые из этих разновидностей.

Многоэмиттерный транзистор (МЭТ)

Структура многоэмиттерного транзистора (МЭТ) показана на рис.3.5а. Такие транзисторы составляют основу распространенного класса цифровых ИС – схем ТТЛ. Количество эмиттеров может составлять 5 -8 и более.

МЭТ представляет собой интегральный элемент, объединяющий свойства диодных элементов и транзисторного ключа.

Основное отличие МЭТ от обычных транзисторов заключается в том, что он имеет несколько эмиттеров, объединённых одним слоем базы. Эмиттерные переходы выполняют функцию, аналогичную функции диодов в схемах ДТЛ. Эмиттеры располагаются так, что прямое их взаимодействие через соединяющий участок пассивной базы практически исключается. Для этого расстояние между эмиттерами должно превышать диффузионную длину носителей в базовом слое. Если, например, транзистор легирован золотом, то диффузионная длина не превышает 2-3 мкм и практически оказывается достаточным расстояние между эмиттерами 10-15мкм.

МЭТ можно рассматривать как совокупность нескольких независимых транзисторов объединённых коллектором и базой. Такой транзистор занимает меньшую площадь, а следовательно имеет малую паразитную ёмкость, благодаря чему быстродействие таких схем выше, чем у схем ДТЛ.

Создаётся многоэмиттерный транзистор одновременно с другими элементами схемы, поэтому параметры областей коллектора, базы и эмиттера у него те же, что и у обычного npn-транзистора.

В схемах ТТЛ удалось избежать основного недостатка элементов ДТЛ: большого количества диодов. ИС при использовании МЭТ оказываются более простыми и имеют лучшую интегральную способность.

Рис.3.5. Многоэмиттерный транзистор: а-топология и структура;

б- схемные модели в) убрать.

Многоколлекторный транзистор (МКТ)

Структура многоколлекторного транзистора показана на рис.3.10. Она похожа на структуру МЭТ, отличие лишь в использовании структуры.

МКТ – это МЭТ, используемые в инверсном режиме: общим эмиттером является эпитаксиальный n – слой, а коллекторами служат высоколегированные n + – слои малых размеров. Такие транзисторы составляют основу одного из популярных классов цифровых ИС – схем инжекционной логики (И 2 Л).

Рис.3.10. Многоколлекторный транзистор: а-структура; б-схемные модели;

в- траектория движения инжектированных носителей

Основной задачей при разработке МКТ является увеличение коэффициента передачи тока от общего n-эмиттера (инжектора) к каждому из n + – коллекторов. В данном случае необходимо, чтобы скрытый n + – слой располагался как можно ближе к базовому или просто контактировал с ним. Тогда этот высоколегированный n + – слой, будучи эмиттером, обеспечит высокий коэффициент инжекции.

Для повышения коэффициента переноса n + – коллекторы следует располагать как можно ближе друг к другу, сокращая тем самым площадь пассивной области базы. С учётом ограничения конструктивно-технологических факторов, при сравнительно разреженном расположении коллекторов получают коэффициенты усиления 4-10, что достаточно для функционирования схем И 2 Л, если число коллекторов не превышает 3-5.

На рис 3.10в показаны траектории движения инжектированных носителей в базе. Видно, что носители двигаются так, что их доля, попадающая на коллекторы, существенно больше, чем, если её рассчитывать по формальному отношению площади коллектора к площади эмиттера. Следует также учитывать, что коллекторная ёмкость у МКТ значительно меньше, чем у МЭТ и обычных транзисторов, из-за малой площади n + – коллектора.

Разновидности биполярных транзисторов

Структура многоэмиттерного транзистора (МЭТ) показана на рисунке 4.10а, а его условное обозначение на рисунке 4.10в. Такие транзисторы

Читайте также:  Атрибуты к дню рождения ребенка

Рисунок 4.10

составляют основу цифровых ТТЛ ИМС, рассмотренных выше. Количество эмиттеров может составлять 2-8 и более. В первом приближении МЭТ можно рассматривать как совокупность отдельных транзисторов с соединенными базами и коллек­торами. Особенности МЭТ как единой структуры следующие.

Во-первых, каждая пара смежных эмиттеров вместе с разделяю­щим их

р-слоем базы образует горизонтальный(иногда говорят – продольный)тран- зистор типа n + -р-n + .Если на одном из эмиттеров действует прямое напряжение, а на другом обрат­ное, то первый будет инжектировать электроны, а второй будет собирать те из них, которые инжектированы через боковую поверхность эмиттера и прошли без рекомбинации расстояние между эмиттерами. Такой транзисторный эффектявляется для МЭТ паразитным. Чтобы избежать горизон­тального транзисторного эффекта, расстояние между эмиттерами дол- жно превышать диффузионную длину носителей в базовом слое. Если транзистор легирован золотом, то диффузионная длина не превышает 2-3 мкм и практически оказы­вается достаточным расстояние между эмиттерами

Во-вторых, важно, чтобы МЭТ имел как можно меньший инверс­ный коэффициент передачи тока. В противном случае в инверсном режиме, когда эмиттеры находятся под обратным напряжением, а коллектор под прямым, носители, инжектируемые коллектором, будут достигать эмиттеров, и в цепи последних, несмотря на их обратное смещение, будет протекать ток – паразитный эффект аналогичный отмеченному выше.

Как известно, инверсный коэффициент передачи всегда меньше нормального из-за различия в степени легирования и в площадях эмиттера и коллектора. Чтобы дополнительно уменьшить инверсный коэффициент передачи тока ai в МЭТ, искусственно увеличивают сопро­тивление пассивной базы, удаляя омический базовый кон­такт от активной области транзистора (рисунок 4.10б, металлизация не изображена).При такой конфигурации сопротивление узкого «перешейка» между активной областью и базовым контактом может составлять 200-300 Ом, а падение напряжения на нем от базового тока 0,1-0,15 В. Значит, прямое напряжение на коллекторном переходе (в инверсном ре­жиме) будет в активной области на 0,1-0,15 В меньше, чем вблизи базового контакта. Соответственно инжекция электронов из коллек­тора в активную область базы будет незначительной и паразитные токи через эмиттеры будут практически отсутствовать.

Дата добавления: 2015-05-06 ; Просмотров: 4916 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два электронно-дырочных перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы. В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р и n-р-n. Условные графические обозначения транзисторов р-n-р и n-р-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер.

Принцип работы транзисторов р-n-р и n-р-n одинаков, поэтому в дальнейшем будем рассматривать лишь работу транзистора со структурой р-n-р.
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало: у высокочастотных транзисторов оно менее 10 микрометров (1 мкм = 0,001 мм), а у низкочастотных не превышает 50 мкм.
При работе транзистора на его переходы поступают внешние напряжения от источника питания. В зависимости от полярности этих напряжений каждый переход может быть включен как в прямом, так и в обратном направлении. Различают три режима работы транзистора: 1) режим отсечки — оба перехода и, соответственно, транзистор полностью закрыты; 2) режим насыщения — транзистор полностью открыт;3) активный режим — это режим, промежуточный между двумя первыми. Режимы отсечки и насыщения совместно применяются в ключевых каскадах, когда транзистор попеременно то полностью открыт, то полностью заперт с частотой импульсов, поступающих на его базу. Каскады, работающие в ключевом режиме, применяются в импульсных схемах (импульсные блоки питания, выходные каскады строчной развертки телевизоров и др.). Частично в режиме отсечки могут работать выходные каскады усилителей мощности.
Наиболее часто транзисторы применяются в активном режиме. Такой режим определяется подачей на базу транзистора напряжения небольшой величины, которое называется напряжением смещения (U см.) Транзистор приоткрывается и через его переходы начинает течь ток. Принцип работы транзистора основан на том, что относительно небольшой ток, текущий через эмиттерный переход (ток базы), управляет током большей величины в цепи коллектора. Ток эмиттера представляет собой сумму токов базы и коллектора.

Читайте также:  Зеленый тюль в интерьере фото

Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (I ЭБО ) И коллектора (I КБО ). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения . Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками U ЭБ и U КБ . В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (I Э.нас ) и коллектора (I К.нас ).

Для усиления сигналов применяется активный режим работы транзистора .
При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях.

Под действием прямого напряжения U ЭБ происходит инжекция дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в ней неосновными носителями заряда и под действием сил диффузии движутся (диффундируют) к коллекторному р-n-переходу. Часть дырок в базе заполняется (рекомбинирует) имеющимися в ней свободными электронами. Однако ширина базы небольшая — от нескольких единиц до 10 мкм. Поэтому основная часть дырок достигает коллекторного р-n-перехода и его электрическим полем перебрасывается в коллектор. Очевидно, что ток коллектора I К p не может быть больше тока эмиттера, так как часть дырок рекомбинирует в базе. Поэтому I K p = h 21Б I э
Величина h 21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h 21Б = 0,90. 0,998. Так как коллекторный переход включен в обратном направлении (часто говорят — смещен в обратном направлении), через него протекает также обратный ток I КБО , образованный неосновными носителями базы (дырками) и коллектора (электронами). Поэтому полный ток коллектора транзистора, включенного по схеме с общей базой

Читайте также:  Когда можно в сауну после родов

I к = h 21Б I э + I КБО
Дырки, не дошедшие до коллекторного перехода и прорекомбинировавшие (заполнившиеся) в базе, сообщают ей положительный заряд. Для восстановления электрической нейтральности базы в нее из внешней цепи поступает такое же количество электронов. Движение электронов из внешней цепи в базу создает в ней рекомбинационный ток I Б.рек. Помимо рекомбинационного через базу протекает обратный ток коллектора в противоположном направлении и полный ток базы
I Б = I Б.рек — I КБО
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.

В предыдущей схеме электрическая цепь, образованная источником U ЭБ , эмиттером и базой транзистора, называется входной, а цепь, образованная источником U КБ , коллектором и базой этого же транзистора,— выходной. База является общим электродом транзистора для входной и выходной цепей, поэтому такое его включение называют схемой с общей базой, или сокращенно «схемой ОБ».

На следующем рисунке изображена схема, в которой общим электродом для входной и выходной цепей является эмиттер. Это схема включения с общим эмиттером, или сокращенно «схема ОЭ» .

В ней выходным током, как и в схеме ОБ, является ток коллектора I К , незначительно отличающийся от тока эмиттера I э , а входным — ток базы I Б , значительно меньший, чем коллекторный ток. Связь между токами I Б и I К в схеме ОЭ определяется уравнением: I К = h 21 Е I Б + I КЭО
Коэффициент пропорциональности h 21 Е называют статическим коэффициентом передачи тока базы. Его можно выразить через статический коэффициент передачи тока эмиттера h 21Б
h 21 Е = h 21Б / (1 —h 21Б )
Если h 21Б находится в пределах 0,9. 0,998, соответствующие значения h 21 Е будут в пределах 9. 499.
Составляющая I кэо называется обратным током коллектора в схеме ОЭ. Ее значение в 1+h 21 Е раз больше, чем I КБО , т. е.I КЭО =(1+ h 21 Е ) I КБО. Обратные токи I КБО и I КЭО не зависят от входных напряжений U ЭБ и U БЭ и вследствие этого называются неуправляемыми составляющими коллекторного тока. Эти токи сильно зависят от температуры окружающей среды и определяют температурные свойства транзистора. Установлено, что значение обратного тока I КБО удваивается при повышении температуры на 10 °С для германиевых и на 8 °С для кремниевых транзисторов. В схеме ОЭ температурные изменения неуправляемого обратного тока I КЭО могут в десятки и сотни раз превысить температурные изменения неуправляемого обратного тока I КБО и полностью нарушить работу транзистора. Поэтому в транзисторных схемах применяются специальные меры термостабилизации транзисторных каскадов, способствующие уменьшению влияния температурных изменений токов на работу транзистора.
На практике часто встречаются схемы, в которых общим электродом для входной и выходной цепей транзистора является коллектор. Это схема включения с общим коллектором, или «схема ОК» (эмиттерный повторитель) .

Независимо от схемы включения транзистора для него всегда справедливо уравнение, связывающее токи его электродов:
I э = I к + I Б .

Сравнительная оценка схем включения биполярных транзисторов

K I – коэффициент усиления по току

K U – коэффициент усиления по напряжению

K P – коэффициент усиления по мощности

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector