Средства измерений и их характеристики

В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно—измерительные приборы (КИП), и системы.

1. Мера представляет собой такое средство измерений, которое предназначается для воспроизведения физической величины положенного размера. К мерам относятся плоскопараллельные меры длины (плитка) и угловые меры.

2. Калибры представляют собой некие устройства, предназначение которых заключается в использовании для контролирования и поиска в нужных границах размеров, взаиморасположения поверхностей и формы деталей. Как правило, они подразделяются на: гладкие предельные калибры (скобы и пробки), а также резьбовые калибры, к которым относятся резьбовые кольца или скобы, резьбовые пробки и т. п.

3. Измерительный прибор, представленный в виде устройства, вырабатывающего сигнал измерительной информации в форме, понятной для восприятия наблюдателей.

4. Измерительная система, понимаемая как некая совокупность средств измерений и неких вспомогательных устройств, которые соединяются между собой каналами связи. Она предназначена для производства сигналов информации измерений в некой форме, которая подходит для автоматической обработки, а также для трансляции и применения в автоматических системах управления.

5. Универсальные средства измерения, предназначение которых находится в использовании для определения действительных размеров. Любое универсальное измерительное средство характеризуется назначением, принципом действия, т. е физическим принципом, положенным в основу его построения, особенностями конструкции и метрологическими характеристиками.

При контрольном измерении угловых и линейных показателей применяют прямые измерения, реже встречаются относительные, косвенные или совокупные измерения. В научной литературе среди прямых методов измерений выделяют, как правило, следующие:

1) метод непосредственной оценки, представляющий собой такой метод, при котором значение величины определяют по отсчетному устройству измерительного прибора;

2) метод сравнения с мерой, под которым понимается метод, при котором данную величину возможно сравнить с величиной, воспроизводимой мерой;

3) метод дополнения, под которым обычно подразумевается метод, когда значение полученной величины дополняется мерой этой же величины с тем, чтобы на используемый прибор для сравнения действовала их сумма, равная заранее заданному значению;

4) дифференциальный метод, который характеризуется измерением разности между данной величиной и известной величиной, воспроизводимой мерой. Метод дает результат с достаточно высоким показателем точности при применении грубых средств измерения;

5) нулевой метод, который, по сути, аналогичен дифференциальному, но разность между данной величиной и мерой сводится к нулю. Причем нулевой метод обладает определенным преимуществом, поскольку мера может быть во много раз меньше измеряемой величины;

6) метод замещения, представляющий собой сравнительный метод с мерой, в которой измеряемую величину заменяют известной величиной, которая воспроизводится мерой. Вспомним о том, что существуют и нестандартизованные методы. В эту группу, как правило, включают следующие:

1) метод противопоставления, подразумевающий под собой такой метод, при котором данная величина, а также величина, воспроизводимая мерой, в одно и то же время действуют на прибор сравнения;

2) метод совпадений, характеризующийся как метод, при котором разность между сравниваемыми величинами измеряют, используя совпадение меток на шкалах или периодических сигналов.

10. Классификация средств измерения

Средство измерения (СИ)– это техническое средство или совокупность средств, применяющееся для осуществления измерений и обладающее нормированными метрологическими характеристиками. При помощи средств измерения физическая величина может быть не только обнаружена, но и измерена.

Средства измерения классифицируются по следующим критериям:

1) по способам конструктивной реализации;

2) по метрологическому предназначению.

По способам конструктивной реализации средства измерения делятся на:

1) меры величины;

2) измерительные преобразователи;

3) измерительные приборы;

4) измерительные установки;

5) измерительные системы.

Меры величины– это средства измерения определенного фиксированного размера, многократно используемые для измерения. Выделяют:

1) однозначные меры;

2) многозначные меры;

Некоторое количество мер, технически представляющее собой единое устройство, в рамках которого возможно по—разному комбинировать имеющиеся меры, называют магазином мер.

Объект измерения сравнивается с мерой посредством компараторов (технических приспособлений). Например, компаратором являются рычажные весы.

К однозначным мерам принадлежат стандартные образцы (СО). Различают два вида стандартных образцов:

1) стандартные образцы состава;

2) стандартные образцы свойств.

Стандартный образец состава или материала– это образец с фиксированными значениями величин, количественно отражающих содержание в веществе или материале всех его составных частей.

Стандартный образец свойств вещества или материала – это образец с фиксированными значениями величин, отражающих свойства вещества или материала (физические, биологические и др.).

Каждый стандартный образец в обязательном порядке должен пройти метрологическую аттестацию в органах метрологической службы, прежде чем начнет использоваться.

Стандартные образцы могут применяться на разных уровнях и в разных сферах. Выделяют:

1) межгосударственные СО;

2) государственные СО;

3) отраслевые СО;

4) СО организации (предприятия).

Измерительные преобразователи (ИП)– это средства измерения, выражающие измеряемую величину через другую величину или преобразующие ее в сигнал измерительной информации, который в дальнейшем можно обрабатывать, преобразовывать и хранить. Измерительные преобразователи могут преобразовывать измеряемую величину по—разному. Выделяют:

1) аналоговые преобразователи (АП);

2) цифроаналоговые преобразователи (ЦАП);

3)аналого—цифровые преобразователи (АЦП). Измерительные преобразователи могут занимать различные позиции в цепи измерения. Выделяют:

1) первичные измерительные преобразователи, которые непосредственно контактируют с объектом измерения;

2) промежуточные измерительные преобразователи, которые располагаются после первичных преобразователей. Первичный измерительный преобразователь технически обособлен, от него поступают в измерительную цепь сигналы, содержащие измерительную информацию. Первичный измерительный преобразователь является датчиком. Конструктивно датчик может быть расположен довольно далеко от следующего промежуточного средства измерения, которое должно принимать его сигналы.

Обязательными свойствами измерительного преобразователя являются нормированные метрологические свойства и вхождение в цепь измерения.

Измерительный прибор– это средство измерения, посредством которого получается значение физической величины, принадлежащее фиксированному диапазону. В конструкции прибора обычно присутствует устройство, преобразующее измеряемую величину с ее индикациями в оптимально удобную для понимания форму. Для вывода измерительной информации в конструкции прибора используется, например, шкала со стрелкой или цифроуказатель, посредством которых и осуществляется регистрация значения измеряемой величины. В некоторых случаях измерительный прибор синхронизируют с компьютером, и тогда вывод измерительной информации производится на дисплей.

В соответствии с методом определения значения измеряемой величины выделяют:

1) измерительные приборы прямого действия;

2) измерительные приборы сравнения.

Измерительные приборы прямого действия– это приборы, посредством которых можно получить значение измеряемой величины непосредственно на отсчетном устройстве.

Измерительный прибор сравнения– это прибор, посредством которого значение измеряемой величины получается при помощи сравнения с известной величиной, соответствующей ее мере.

Измерительные приборы могут осуществлять индикацию измеряемой величины по—разному. Выделяют:

1) показывающие измерительные приборы;

2) регистрирующие измерительные приборы.

Разница между ними в том, что с помощью показывающего измерительного прибора можно только считывать значения измеряемой величины, а конструкция регистрирующего измерительного прибора позволяет еще и фиксировать результаты измерения, например посредством диаграммы или нанесения на какой—либо носитель информации.

Отсчетное устройство– конструктивно обособленная часть средства измерений, которая предназначена для отсчета показаний. Отсчетное устройство может быть представлено шкалой, указателем, дисплеем и др. Отсчетные устройства делятся на:

1) шкальные отсчетные устройства;

2) цифровые отсчетные устройства;

3) регистрирующие отсчетные устройства. Шкальные отсчетные устройства включают в себя шкалу и указатель.

Шкала– это система отметок и соответствующих им последовательных числовых значений измеряемой величины. Главные характеристики шкалы:

1) количество делений на шкале;

2) длина деления;

4) диапазон показаний;

5) диапазон измерений;

6) пределы измерений.

Деление шкалы– это расстояние от одной отметки шкалы до соседней отметки.

Длина деления– это расстояние от одной осевой до следующей по воображаемой линии, которая проходит через центры самых маленьких отметок данной шкалы.

Цена деления шкалы– это разность между значениями двух соседних значений на данной шкале.

Диапазон показаний шкалы– это область значений шкалы, нижней границей которой является начальное значение данной шкалы, а верхней – конечное значение данной шкалы.

Диапазон измерений– это область значений величин в пределах которой установлена нормированная предельно допустимая погрешность.

Пределы измерений– это минимальное и максимальное значение диапазона измерений.

Практически равномерная шкала– это шкала, у которой цены делений разнятся не больше чем на 13 % и которая обладает фиксированной ценой деления.

Существенно неравномерная шкала– это шкала, у которой деления сужаются и для делений которой значение выходного сигнала является половиной суммы пределов диапазона измерений.

Выделяют следующие виды шкал измерительных приборов:

1) односторонняя шкала;

2) двусторонняя шкала;

3) симметричная шкала;

4) безнулевая шкала.

Односторонняя шкала– это шкала, у которой ноль располагается в начале.

Двусторонняя шкала– это шкала, у которой ноль располагается не в начале шкалы.

Симметричная шкала– это шкала, у которой ноль располагается в центре.

Измерительная установка– это средство измерения, представляющее собой комплекс мер, ИП, измерительных приборов и прочее, выполняющих схожие функции, используемые для измерения фиксированного количества физических величин и собранные в одном месте. В случае, если измерительная установка используется для испытаний изделий, она является испытательным стендом.

Измерительная система– это средство измерения, представляющее собой объединение мер, ИП, измерительных приборов и прочее, выполняющих схожие функции, находящихся в разных частях определенного пространства и предназначенных для измерения определенного числа физических величин в данном пространстве.

По метрологическому предназначению средства измерения делятся на:

1) рабочие средства измерения;

18.04.13 Лекция Рабочие средства измерения (РСИ)– это средства измерения, используемые для осуществления технических измерений. Рабочие средства измерения могут использоваться в разных условиях. Выделяют:

1) лабораторные средства измерения, которые применяются при проведении научных исследований;

2) производственные средства измерения, которые применяются при осуществлении контроля над протеканием различных технологических процессов и качеством продукции;

3) полевые средства измерения, которые применяются в процессе эксплуатации самолетов, автомобилей и других технических устройств.

К каждому отдельному виду рабочих средств измерения предъявляются определенные требования. Требования к лабораторным рабочим средствам измерения – это высокая степень точности и чувствительности, к производственным РСИ – высокая степень устойчивости к вибрациям, ударам, перепадам температуры, к полевым РСИ – устойчивость и исправная работа в различных температурных условиях, устойчивость к высокому уровню влажности.

Эталоны– это средства измерения с высокой степенью точности, применяющиеся в метрологических исследованиях для передачи сведений о размере единицы. Более точные средства измерения передают сведения о размере единицы и так далее, таким образом образуется своеобразная цепочка, в каждом следующем звене которой точность этих сведений чуть меньше, чем в предыдущем.

Сведения о размере единицы предаются во время проверки средств измерения. Проверка средств измерения осуществляется с целью утверждения их пригодности.

Дата добавления: 2014-01-04 ; Просмотров: 1153 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

9. Средства измерений и их характеристики

В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно—измерительные приборы (КИП), и системы.

1. Мера представляет собой такое средство измерений, которое предназначается для воспроизведения физической величины положенного размера. К мерам относятся плоскопараллельные меры длины (плитка) и угловые меры.

2. Калибры представляют собой некие устройства, предназначение которых заключается в использовании для контролирования и поиска в нужных границах размеров, взаиморасположения поверхностей и формы деталей. Как правило, они подразделяются на: гладкие предельные калибры (скобы и пробки), а также резьбовые калибры, к которым относятся резьбовые кольца или скобы, резьбовые пробки и т. п.

3. Измерительный прибор, представленный в виде устройства, вырабатывающего сигнал измерительной информации в форме, понятной для восприятия наблюдателей.

4. Измерительная система, понимаемая как некая совокупность средств измерений и неких вспомогательных устройств, которые соединяются между собой каналами связи. Она предназначена для производства сигналов информации измерений в некой форме, которая подходит для автоматической обработки, а также для трансляции и применения в автоматических системах управления.

5. Универсальные средства измерения, предназначение которых находится в использовании для определения действительных размеров. Любое универсальное измерительное средство характеризуется назначением, принципом действия, т. е физическим принципом, положенным в основу его построения, особенностями конструкции и метрологическими характеристиками.

При контрольном измерении угловых и линейных показателей применяют прямые измерения, реже встречаются относительные, косвенные или совокупные измерения. В научной литературе среди прямых методов измерений выделяют, как правило, следующие:

1) метод непосредственной оценки, представляющий собой такой метод, при котором значение величины определяют по отсчетному устройству измерительного прибора;

2) метод сравнения с мерой, под которым понимается метод, при котором данную величину возможно сравнить с величиной, воспроизводимой мерой;

3) метод дополнения, под которым обычно подразумевается метод, когда значение полученной величины дополняется мерой этой же величины с тем, чтобы на используемый прибор для сравнения действовала их сумма, равная заранее заданному значению;

4) дифференциальный метод, который характеризуется измерением разности между данной величиной и известной величиной, воспроизводимой мерой. Метод дает результат с достаточно высоким показателем точности при применении грубых средств измерения;

5) нулевой метод, который, по сути, аналогичен дифференциальному, но разность между данной величиной и мерой сводится к нулю. Причем нулевой метод обладает определенным преимуществом, поскольку мера может быть во много раз меньше измеряемой величины;

6) метод замещения, представляющий собой сравнительный метод с мерой, в которой измеряемую величину заменяют известной величиной, которая воспроизводится мерой. Вспомним о том, что существуют и нестандартизованные методы. В эту группу, как правило, включают следующие:

1) метод противопоставления, подразумевающий под собой такой метод, при котором данная величина, а также величина, воспроизводимая мерой, в одно и то же время действуют на прибор сравнения;

2) метод совпадений, характеризующийся как метод, при котором разность между сравниваемыми величинами измеряют, используя совпадение меток на шкалах или периодических сигналов.

Данный текст является ознакомительным фрагментом.

2. Средства измерений и их характеристики.

2.1 Классификация средств измерений.

Средство измерений – техническое средство, используемое при измерений и имеющее нормированные метрологические характеристики.

Метрологическими называются характеристики, оказывающие влияние на результат и погрешность измерения. Они входят в состав технических характеристик, определяющих другие свойства средств измерений (диапазоны частот, габаритные размеры, вид элементов питания).

Под нормированием метрологических характеристик понимается количественное задание определенных номинальных значений и допустимых отклонений от этих значений. Нормирование метрологических характеристик позволяет оценить погрешность измерения, достичь взаимозаменяемости средств измерений, обеспечить возможность сравнения средств измерений между собой и оценку погрешностей измерительных систем и установок на основе метрологических характеристик входящих в их состав средств измерений. Именно нормирование метрологических характеристик отличает средство измерений от других подобных технических средств (например, измерительный трансформатор от силового трансформатора …)

Уже указывалось, что в соответствии с ГОСТ все средства измерений делятся на шесть видов : меры, измерительные преобразователи, измерительные приборы, вспомогательные средства измерений, измерительные установки и измерительные системы. Наиболее многочисленной группой средств измерений являются измерительные приборы и преобразователи, которые обобщенно называются измерительными устройствами (ИУ). В силу большого разнообразия их классифицируют по различным признакам :

По используемым физическим процессам ИУ разделяют на механические, электромеханические, электронные, оптоэлектронные и т.п.

По физической природе измеряемой величины различают вольтметры, амперметры, термометры, манометры, уровнемеры, влагомеры и т.д.

По виду измеряемой величины или сигнала измерительной информации, а также по способу обработки сигнала приборы делятся на аналоговые и цифровые. В аналоговых приборах показания являются непрерывной функцией измеряемой величины, т.е. могут также, как и измеряемая величина, принимать бесконечное множество значений. При этом во время показания могут быть как непрерывной, так и дискретной (прерывистой) функцией измеряемой величины, т.е. различают приборы непрерывного и дискретного действия.

В цифровом приборе непрерывная по размеру и во времени величина преобразуется в дискретную, квантуется, кодируется и цифровой код отображается на цифровом отсчетном устройстве. В результате показания цифрового прибора являются дискретными во времени и квантованными по размеру, т.е. могут принимать лишь конечное число значений.

Внешним признаком аналоговых или цифровых приборов является наличие аналогового или цифрового показывающего или регистрирующего устройства. Соответственно приборы принято также разделять на показывающие, допускающие только отсчитывание показаний, и регистрирующие, в которых предусмотрена автоматическая регистрация показаний. Среди последних, в свою очередь, различают самопишущие и печатающие. В самопишущих приборах (являющихся аналоговыми) показания измеряемых значений величины записываются в виде графика осциллограммы, показывающей изменение значения величины во времени. В печатающих приборах (являющихся цифровыми) результаты измерений печатаются в цифровой форме.

Аналоговые показывающие устройства электронных приборов обычно представляют из себя электромеханический преобразователь и аналоговое отсчетное устройство. Последнее состоит из шкалы, проградуированной с помощью меры и играющей роль меры при измерении, и указателя, совершающего линейное или угловое перемещение. В качестве указателя используются либо стрелка, либо луч света.

Роль показывающего устройства может выполнять и электронно-лучевая трубка (ЭЛТ), обладающая весьма малой инерционностью, что позволяет наблюдать высокочастотные процессы (до сотен мегагерц, до наносекунд импульсы).

В качестве аналогово-регистрационных устройств в диапазоне частот до 10 Гц используются самописцы, содержащие электромеханический преобразователь, обеспечивающий перемещение записывающего узла со специальным пером. Запись осуществляется специальными чернилами (пастами) на бумаге, движущейся перпендикулярно направлению перемещения пера. В некоторых случаях используются термо-, электро-, и химочувствительные бумаги. В диапазоне до 20 КГц применяют светолучевые осциллографы, в которых запись осуществляется с помощью специальных гальванометров лучом света на фотобумаге или фотопленке, а также ультрафиолетовым лучом на специальной бумаге, самопроявляющейся на свету. Хорошая точность, чувствительность, многоканальность (до 10 и более), малые габаритные размеры являются причиной широкого применения этих приборов. Для регистрации более высокочастотных процессов используют электронно-лучевые осциллографы с фотографированием процесса с экрана ЭЛТ.

Для регистрации однократных процессов применяют также специальные запоминающие ЭЛТ, позволяющие хранить изображение десятки часов.
Цифровое отсчетное устройство обычно состоит из цифровых знаковых индикаторов, обеспечивающих воспроизведение десятичных цифр, и алфавитных индикаторов, позволяющих указать единицу измеряемой величины. В цифровых регистрирующих приборах, как правило, осуществляется печатание показаний с помощью алфавитно-цифровых печатающих устройств со скоростью до 10 3 знаков в секунду. Для долговременного хранения информации используются также различные виды запоминающих устройств.

Цифровое отсчетное или регистрирующее устройство никак не ограничивает точность цифрового прибора, так как цифровой код без какой-либо погрешности может быть изображен на цифровом отсчетном устройстве.

Точность аналоговых приборов ограничивается погрешностями измерительных преобразователей, создающих перемещение указателя, погрешностями шкалы и личными (субъективными) погрешностями, вносимыми оператором (из-за конечной толщины указателя, длины деления шкалы и разрешающей способности глаза, из-за параллакса, из-за погрешности интерполирования при положении указателя между отметками делений шкалы). В результате погрешность аналоговых приборов составляет обычно 0,5 %. В то же время погрешность цифровых приборов удается уменьшить до 10 -6 %, а при измерении частотно-временных параметров и менее.

Однако не всегда цифровое отсчетное или регистрирующее устройство лучше аналогового. При большом числе одновременно измеряемых величин (контроль сложного объекта) показания аналоговых приборов воспринимаются легче, так как независимо от цифр на шкале пространственное положение указателя и характер его перемещения или осциллограмма регистрируемого процесса позволяет более оперативно проводить анализ контролируемого процесса.

Подтверждением большей информативности аналогово-отсчетных устройств является разработка для некоторых цифровых приборов шкалы в виде расположенных в линию светодиодов, управляемых цифровой схемой. Эта шкала воспринимается оператором как аналоговая, хотя прибор является целиком цифровым.

Наряду с точностью важной характеристикой является быстродействие измерительного устройства, характеризуемое числом измерений (преобразований) в единицу времени либо временем одного измерения. При измерении изменяющихся во времени величин повышение быстродействия играет важную роль. В общем случае повышение быстродействия измерительного прибора ограничивается быстродействием используемой элементной базы.

Для показывающих приборов обычно не требуется высокого быстродействия в силу ограниченности возможностей оператора при приеме информации.

Для регистрационных приборов, а также измерительных преобразователей требование быстродействия является существенным особенно когда обработка информации осуществляется с помощью ЭВМ. В этом случае цифровые измерительные устройства обеспечивают большее быстродействие, так как цифровой код может непосредственно, без участия оператора вводится в цифровые ЭВМ, исключения составляют электронные осциллографы позволяющие наблюдать и проводить анализ формы столь быстр протекающих процессов, преобразование которых в цифровой код сопряжен с большей погрешностью, либо вообще невозможно из-за ограниченного быстродействия цифровых средств измерений (параллельная обработка), но они приводят к усложнению прибора. К недостаткам цифровых приборов относят их сравнительно высокую стоимость.

П
о структурному принципу различают измерительные устройства прямого действия (преобразования); в котором реализуется метод непосредственной оценки, измерительные устройства, работа которая основана на методе сравнения. В измерительных приборах прямого действия (см. рис. 1) преобразование сигнала происходит в одном направлении последовательно. Здесь П1 и П2 – преобразователи с коэффициентами передачи К1 и К2. Если выходной сигнал У получается в форме, доступной для непосредственного восприятия, рассматриваемая структурная схема характеризует прибор, если для дальнейшей обработки и хранения, — преобразователь. На рис. 2 представлена структурная схема преобразователя, построенного на методе сравнения. Операция сравнения осуществляется с помощью сравнивающего устройства (СУ), в котором обычно одна величина вычитается из другой. Используя выходной сигнал СУ, с помощью преобразователя П можно управлять мерой и реализовать нулевой метод сравнения. В связи с тем, что в измерительных устройствах, основанных на методе сравнения, измеряемая величина уравновешивается (компенсируется) величиной, воспроизводимой мерой, их также называют измерительными устройствами с уравновешивающим (компенсационным) преобразователем. Измерительные устройства в общем случае имеют более высокую точность за счет использования меры. Отмечают также различие требований к отдельным преобразователям измерительных устройств с точки зрения обеспечения измерительных устройств. Так в ИУ непосредственной оценки общий коэффициент передачи К=К1К2 и его точность определяется соответствующей точностью всех преобразователей. В ИУ сравнения имеется отрицательная обратная связь и К=k/(1+k), где k, – коэффициенты передачи прямой и обратной цепей. При k>>1 получают К=1/и точность ИУ тогда определяется главным образом точностью преобразователей в цепи обратной связи (т.е. меры), в то время как коэффициент передачи k может быть нестабильным, лишь бы было большим k – петлевое усиление. Приборы сравнения могут быть выполнены с развертывающим или следящим уравновешиванием.

По структурным признакам ИУ также можно классифицировать по числу каналов и по временной последовательности преобразований входных сигналов. В зависимости от числа входных сигналов, несущих информацию об измеряемой величине, ИУ бывают с одним (например – вольтметр), двумя (фазометр) и более входами, т.е. соответственно одно-, двух- (рис. 3. слева) и многоканальными (рис. 3. справа). В зависимости от временной последовательности преобразований входных сигналов (если их более чем 2) различают ИУ с одновременным (параллельным) и последовательным преобразованием. При последовательном преобразовании сигналы обрабатываются поочередно, причем за цикл измерения каждый сигнал через входное переключающее устройство (коммутатор) подается на вход преобразователя один раз. Разновидностью последовательного преобразователя является периодическое устройство, когда за время одного цикла измерения сигналы переключаются многократно. Последовательное преобразование позволяет уменьшить аппаратурные затраты за счет перехода от многоканальной структуры к одноканальной с входным коммутатором. Кроме того, одноканальная структура ИУ позволяет уменьшить ряд погрешностей, обычно вызываемых неидентичностью характеристик разных каналов.

По точности ИУ делят на образцовые, используемые для поверки других ИУ и утвержденные в качестве образцовых, и рабочие, используемые непосредственно в практических измерениях, не связанных с передачей размера единиц.

По частотному диапазону ИУ делят на низкочастотные (НЧ), высокочастотные (ВЧ) и сверхвысокочастотные (СВЧ), по ширине полосы частот – на широкополосные и избирательные (селективные).

По месту использования ИУ делят на лабораторные и производственные, которые резко отличаются по условиям эксплуатации, по техническим и метрологическим характеристикам.

Дополним классификацию измерительных преобразователей. Их многообразие определяется различием требуемых видов преобразователей.

Преобразователи физического рода сигнала используются тогда, когда измеряемая величина неудобна для непосредственного измерения. Так многие неэлектрические величины предварительно преобразовываются в электрические (механическое перемещение или угловое вращение в электрическую величину) или одни электрические величины в другие (сопротивление в напряжение). Название таких преобразователей определяется либо принципом действия, либо родом входного и выходного сигналов (например, термоэлектрический преобразователь, преобразователь напряжение-частота)

Функциональные преобразователи обеспечивают необходимую зависимость между информативными параметрами входного и выходного сигналов. Такие преобразователи называют : дифференцирующий, интегрирующий, суммирующий, логарифмирующий и т.п.

Согласование по уровню (размеру) входного сигнала осуществляется с помощью масштабных преобразователей. К ним относятся : делитель, усилитель, трансформатор тока (напряжения).

Согласование по сопротивлению обеспечивается с помощью согласующих преобразователей (согласующий трансформатор, эмиттерный повторитель).

По месту включения в общей цепи преобразователи делят на первичные, к которым подводится измеряемая величина, промежуточные и передающие, предназначенные для дистанционной передачи сигналов.

По виду характеристики преобразования преобразователи делят на линейные и нелинейные.

Оцените статью
Topsamoe.ru
Добавить комментарий