Способы очистки химических веществ

В лабораторной практике чаще всего применяются следующие методы очистки веществ: перекристаллизация, возгонка и поглощение. Для очистки твёрдых веществ применяется перекристаллизация и возгонка, для очистки газов – поглощение газов-примесей различными веществами.

Перекристаллизация

Очистка перекристаллизацией основывается на изменении растворимости вещества с изменением температуры. Под растворимостью понимают содержание (концентрацию) растворённого вещества в насыщенном растворе. Она обычно выражается или в процентах, или в граммах растворённого вещества на 100 г растворителя. Данные о растворимости некоторых соединений в воде при различной температуре приведены на рис. 2.1 и в приложении . Небольшие количества примесей, часто не поддающиеся определению обычными методами анализа, механически не могут увлекаться кристаллами осадка. При повторных перекристаллизациях можно получить практически чистое вещество. Насыщенный раствор соли, который остаётся после отфильтровывания выпавших кристаллов называется маточным. Чем меньше по размеру выпавшие кристаллы, тем более чистыми они получаются, так как в этом случае они меньше захватывают маточного раствора, содержащего примеси других веществ. Уменьшению этих примесей содействует промывание кристаллов растворителем после отделения их от маточного раствора.

Рис. 2.1. Кривые растворимости

Возгонка

Возгонкой или сублимацией называется непосредственное превращение твёрдого вещества в пар без образования жидкости. Достигнув температуры возгонки, твёрдое вещество без плавления переходит в пар, который конденсируется в кристаллы на поверхности охлаждённых предметов. Возгонка всегда происходит при температуре ниже температуры плавления вещества.

Используя способность ряда вещества (йода, нафталина, бензойной кислоты, нашатыря и др.) к возгонке, легко получить их в чистом виде (если примесь не возгоняется).

В технике и лабораториях возгонка проводится не только при атмосферном, но и при пониженном давлении (вакууме).

Перегонка

Перегонка или дистилляция основана на превращении жидкости в пар с последующей конденсацией пара в жидкость. Этим методом отделяют жидкость от растворённых в ней твёрдых веществ или менее летучих жидкостей. Так, например, с помощью перегонки очищают воду от солей, которые в ней содержатся. В результате получается дистиллированная вода.

Для перегонки небольших количеств жидкости в лабораторных условиях применяют прибор для перегонки (рис. 2.2).

Жидкость закипает тогда, когда давление её пара становится равным внешнему давлению (обычно атмосферному). Чистое вещество при постоянном давлении кипит при строго определённой температуре. Смеси кипят при различных температурах, зависящих от состава. Поэтому температура кипения является характеристикой чистоты вещества. Чем чище вещество, тем меньше разница между температурой кипения вещества и температурой перегонки, при которой оно перегоняется.

Рис. 2.2. Установка для перегонки:

1 – колба Вюрца, 2 – холодильник Либиха, 3 – аллонж, 4 – приёмник

Перегонка, когда дистиллят отбирается при различных интервалах температур и в различных приёмниках, называется дробной или фракционной перегонкой. Жидкости в приёмниках, отобранные в определённых интервалах температур, называются фракциями. Повторяя несколько раз дробную перегонку, можно почти полностью разделить смесь жидкостей и получить компоненты смеси в чистом виде.

Более полному и быстрому разделению смеси жидкостей путём фракционной перегонки благоприятствует применение дефлегматоров или ректификационных колонок. Перегонка с дефлегматором, а также другие приёмы перегонки, как-то: перегонка под уменьшенным давлением – рассматриваются в руководствах и практикумах по органической химии.

Очистка газов

Очистка газов от примесей достигается путём пропускания его через такие вещества, которые поглощают эти примеси. Например, для получения в приборе Киппа углекислого газа наряду с CO2 выходят примеси: хлористый водород (от соляной кислоты) и пары воды. Если углекислый газ с примесями пропустить сначала через промывалку с водой (для поглощения хлористого водорода), а затем через серную кислоту (для поглощения паров воды), то он получится практически чистым.

Для определения степени чистоты вещества применяются физические и химические методы исследования. К первым относятся: для жидких веществ – определение плотности, температуры кипения, показателя преломления; для твёрдых веществ – определение температуры плавления и ряд других, к вторым методам относятся химические качественные и количественные анализы на содержание примесей.

Абсолютно чистых веществ нет. Применяемые в лабораторных практикумах вещества имеют различную степень чистоты. Максимально допустимое количество примесей в веществе устанавливается государственным стандартом (ГОСТ).

Для лабораторных работ по общей химии и качественному анализу пригодны вещества с маркировкой х.ч. и ч.д.а.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9529 — | 7348 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Башкирский государственный педагогический

университет им.М. Акмуллы»

(ФГБОУ ВПО БГПУ им.М. Акмуллы)

План-конспект урока на тему:

« Методы очистки веществ»

Выполнил: Маркова Е.

Проверил: к.х.н. Рашидова С.Т.

Методы очистки веществ

Методы очистки и разделения веществ основаны на использовании их различий в химических и физических свойствах. Примерами подобных способов разделения являются перекристаллизация, возгонка и поглощение.

Перекристаллизация — метод очистки, основанный на использовании зависимости растворимости веществ от температуры. Обычно перекристаллизация сводится к растворению вещества в подходящем растворителе при одной температуре и последующем выделении кристаллического осадка при другой температуре, когда раствор становится пересыщенным. Пересыщение одного раствора солей можно достигнуть также путем добавления различных добавок, например, спирта.

Возгонка или сублимация — непосредственное превращение твердого вещества в пар (обычно — при нагревании) минуя жидкое состояние. В дальнейшем пар может быть сконденсирован в кристаллы на охлаждаемой поверхности. Возгонка всегда происходит при температуре ниже температуры плавления вещества. Способностью к возгонке обычно обладают твердые вещества с молекулярной структурой (йод, нафталин, нашатырь, бензойная кислота). Очистка методом возгонки становится возможной в том случае, когда примеси не возгоняются.

Перегонка или дистилляция — метод очистки, основанный на превращении жидкости в пар с последующей конденсацией пара в жидкость. Метод обычно используют для отделения жидкости от растворенных в ней твердых веществ или других нелетучих примесей. Этим методом невозможно разделить компоненты с близкими способностями к парообразованию.

Вода, полученная в результате перегонки, называется дистиллированной.

Метод перекристаллизации основан на различной зависимости растворимости вещества и загрязняющих его примесей от температуры. Перекристаллизацию проводят следующим образом: при повышенной температуре (60 °С) готовят насыщенный раствор очищаемого вещества, полученный раствор фильтруют через воронку для горячего фильтрования для удаления нерастворимых примесей, затем раствор охлаждают. При понижении температуры растворимость вещества понижается и основная часть очищаемого вещества выпадает в осадок. Примеси остаются в растворе, поскольку полученный раствор относительно их остается ненасыщенным. Полученные кристаллы отфильтровывают. Метод позволяет очищать вещества, растворимые в воде, например: хлорид натрия, хлорид аммония, дихромат калия, сульфат меди и др.

Метод сублимации (возгонки) используется для очистки твердых веществ, способных при нагревании переходить из твердой фазы непосредственно в газовую, минуя жидкую фазу. Образующийся газ конденсируется в охлаждаемой части прибора. Возгонку проводят при температуре близкой к температуре плавления вещества. Возможна очистка только от примесей, не способных возгоняться. Метод позволяет очищать вещества, способные возгоняться, например: йод, сера, хлорид аммония и др.

Опыт 2.1. Очистка йода возгонкой

1. На технохимических весах взвесили 0,3 г кристаллического йода и 0,1 г йодида калия, поместили их в термостойкий стакан для возгонки.

2. Стакан накрыли круглодонной колбой с холодной водой.

3. Стакан осторожно нагревали на электроплите под тягой. Наблюдали возникновение фиолетовых паров и оседание йода на стенках круглодонной колбы.

4. После завершения возгонки нагрев прекратили, кристаллы йода осторожно перенесли на предварительно взвешенную бумагу.

5. Определили массу йода, полученного при возгонке. Она оказалась равной 0,23 г.

6. Определили практический выход йода при очистке по формуле:

Провели очистку йода методом возгонки. Практический выход очищенного йода составил

Опыт 2.2. Очистка воды перегонкой

Рисунок 1. Прибор для перегонки

1. Собрали установку для перегонки воды, схема которой приведена на рисунке 1

1 — колба Вюрца с очищаемой водой;

3 — холодильник Либиха;

4 — приемник для перегнанной жид-

5 — холодная вода из водопровода;

6 — слив охлаждающей воды

2. Нагревали воду в колбе Вюрца до кипения.

3. Отбросили первые порции дистиллированной воды.

4. Собрали 20 мл дистиллированной воды в коническую колбу.

5. Провели выпаривание на стекле дистиллированной воды и обычной водопроводной воды. Обнаружили, что при выпаривании водопроводной воды остается сухой остаток (белый налет), указывающий на наличие примесей в ней. При выпаривании дистиллированной воды никакого остатка не образуется.

Провели очистку воды методом дистилляции. Обнаружили, что в дистиллированной воде отсутствуют примеси нелетучих веществ.

Опыт 2.3. Очистка углекислого газа

Для получения углекислого газа использовали аппарат Киппа, снаряженный кусками мрамора и 20%-ной соляной кислотой. Образование CO2 происходит по реакции:

CaCO3(тв.) + 2HCl(вод.) CaCl2(вод.) + CO2(газ) + H2O

В качестве примесей к основному продукту могут выступать пары воды и хлороводород.

1. Получаемый в аппарате Киппа газ пропускали через воду в пробирке в течение 2 минут.

2. Проверили наличие хлорид-ионы в полученном растворе с использованием раствора азотнокислого серебра. Наблюдали возникновение помутнения, указывающее на образование AgCl. Данный результат подтверждает присутствие HCl в газообразных продуктах реакции.

3. Получаемый в аппарате газ пропускали через хлоркальциевую трубку, заполненную безводным сульфатом меди (II). Наблюдали возникновение синего окрашивания твердого вещества, указывающего на наличие паров воды в газообразных продуктах реакции.

4. Собрали установку по получению чистого углекислого газа согласно схеме, приведенной на рисунке 2.

5. Экспериментально подтвердили отсутствие примесей HCl и H2O в получаемом углекислом газе.

Опыт 2.4 Очистка твердых веществ.

Задача лабораторной работы: получить m г чистого дихромата калия методом перекристаллизации. Значение m указывается преподавателем каждому учащемуся. Перед выполнением лабораторной работы необходимо выполнить предварительные расчеты.

Предварительные расчеты (пример при m = 10 г):

Необходимо рассчитать количество соли (в г) и воды (в мл), которые потребуются для получения 10 г чистого вещества. Перекристаллизацию проводят при нагревании до 60 °С и охлаждении раствора до 20 °С.

1. Используя справочную литературу, по таблице растворимости солей при различных температурах определяем растворимость дихромата калия при 20 °С и при 60 °С. Растворимость при 20 °С составляет 11,1 г соли в 100 г раствора, при 60 °С – 31,2 г в 100 г раствора.

2. Вычислим количество соли, которое можно получить при охлаждении до 20 °С 100 г раствора, насыщенного при 60 °С: при 60 °С в насыщенном растворе содержится 31,2 г соли и 68,8 г воды (100 – 31,2), при охлаждении этого раствора до 20 °С количество воды останется неизменным – 68,8 г, а 31,2 г соли распределятся между раствором, насыщенным при 20 °С, и осадком. Определим количество соли, которое останется в растворе. При 20 °С насыщенный раствор массой 100 г содержит 11,1 г соли и 88,9 г воды. Составим пропорцию:

11,1 г соли растворятся в 88,9 г воды,

m г соли растворяется в 68,8 г воды, тогда

(г);

следовательно, в растворе останется:

Таким образом, при охлаждении до 20 °С 100 г раствора, насыщенного при 60 °С, содержащего 31,2 г соли и 68,8 г воды, образуется 22,6 г осадка (чистой соли).

3. Вычислим количество соли и воды, необходимых для получения 10 г чистой соли. Составим пропорции:

если взять 31,2 г соли, образуется 22,6 г осадка,

если взять m1 г соли, образуется 10 г осадка, тогда

(г);

если взять 68,8 г воды, образуется 22,6 г осадка,

если взять m2 г воды, образуется 10 г осадка, тогда

(г).

Вычислим объем воды. Плотность воды равна 1 г/мл, следовательно:

(мл).

Таким образом, для получения 10 г чистой соли необходимо взять 13,8 г дихромата калия и 30,4 мл воды. К массе соли добавим 10 %, учитывая массу содержащихся примесей:

m (соли) = 13,8 + 0,1 · 13,8 = 15,2 (г).

Порядок выполнения работы

1. Наливаем в стакан отмеренное мерным цилиндром рассчитанное количество воды.

2. Взвешиваем на весах рассчитанное количество соли.

3. Растираем соль в фарфоровой ступке.

4. Помещаем растертую соль в стакан с водой и нагреваем раствор почти до кипения на электрической плитке с асбестовой сеткой, перемешивая стеклянной палочкой.

5. Полученный раствор отфильтровываем через складчатый фильтр, используя воронку для горячего фильтрования для удаления нерастворимых примесей.

6. Охлаждаем полученный раствор до 20 °С.

7. Выпавшие кристаллы отфильтровываем через предварительно взвешенный фильтр.

8. Несколько кристалликов полученной соли растворяем в 2 мл дистиллированной воды и добавляем 1–2 капли раствора нитрата серебра для определения наличия хлоридов.

9. Несколько кристалликов полученной соли растворяем в 2 мл дистиллированной воды и добавляем 1–2 капли раствора хлорида бария для определения наличия сульфатов.

10. Если образуются осадки хлорида серебра и/или сульфата бария, то проводим повторную перекристаллизацию, предварительно рассчитав количество воды, необходимое для приготовления насыщенного при 60 °С раствора, содержащего полученную массу соли.

11. Перекристаллизованный чистый дихромат калия на фильтре помещаем в фарфоровую чашку и высушиваем в сушильном шкафу при 60 °С до постоянной массы (взвешивание проводим каждые 15–20 минут, если после 2 взвешиваний масса не изменилась, то соль высушена).

12. Определяем массу полученной соли, отняв из массы соли с фильтром массу фильтра.

Реактивы, выпускаемые промышленностью или получаемые в лаборатории, могут содержать нерастворимые и растворимые примеси.

По степени чистоты, т.е. по содержанию основного вещества и допустимых примесей, реактивы имеют соответствующую классификацию (табл. 14). Она указывается на этикетках товарных реактивов.

Таблица 14.Классификация реактивов по степени чистоты

Марка реактива Обозначение Содержание примесей, % Область использования
Чистый «ч» 0,1 Лабораторные работы учебного и производственного характера
Чистый для анализа «ч.д.а» 0,1–0,01 Научно-исследовательские и аналитические работы
Химически чистый «х.ч.» 0,5∙10 -5 –10 -6 Ответственные научно-исследовательские работы
Спектрально чистый «с.ч.» 5∙10 -5 Специальные работы
Особой чистоты «ос.ч.» 10 -4 –10 -9
Высшей чистоты «в.ч.» 10 -7

Три первые марки охватывают все реактивы общего назначения. Препараты более высокой чистоты применяются лишь для специальных работ, где иногда даже миллионные доли процента являются недопустимыми. Ими пользуются в промышленности полупроводниковых материалов, радиоэлектронике, квантовой электронике.

При работе с реактивами следует всегда помнить, что снижение примесей даже на один порядок, особенно, начиная с 10 -3 % , приводит к резкому возрастанию цены вещества. Поэтому нельзя использовать для малоответственных работ препараты высокой чистоты. С другой стороны, если требуется, чистоту реактива повышают специальными методами очистки, а контролируют чистоту соединения качественным и количественным анализом или определением его физических характеристик: температуры плавления, температуры кипения, относительной плотности, показателя преломления.

В лабораторной практике чаще всего применяют следующие методы очистки реактивов: перекристаллизацию из раствора и возгонку для твердых веществ, перегонку или ректификацию для жидкостей и сорбцию примесей в случае газов.

Кроме того, для очистки жидкостей и растворов используют осаждение или соосаждение[45] примесей (с помощью химических реагентов или электролизом), а также экстракцию и сорбцию. Металлы очищают перекристаллизацией из расплава, в частности, зонной плавкой. Рассмотрим некоторые из перечисленных методов.

Зонная плавка.Метод очистки металла зонной плавкой, как и очистка кристаллизацией из расплава основан на большей растворимости примесей в расплаве, чем в твердой фазе М. При зонной плавке стержень очищаемого материала медленно продвигается сквозь узкую зону нагрева, расплавляясь только в ней. При этом смеси, накапливаясь в расплаве, перемещаются в конец стержня. Плавку повторяют несколько раз и затем конец стержня, где накопились примеси, обрубают.

Экстракция – это метод извлечения вещества из одной жидкой фазы в другую через границу раздела этих фаз вследствие большей растворимости извлекаемого (экстрагируемого) вещества во второй жидкости. Например, можно очистить воду от иода, извлекая его бензолом. Чтобы создать большую площадь поверхности экстрагирования и таким образом повысить скорость процесса, жидкости интенсивно перемешивают до образования эмульсии. Затем, после отстаивания до практически полного расслоения фаз, их разделяют (в делительной воронке).

Сорбция (от лат. слова «sorbeo», что значит «поглощаю») – это явление извлечения, например, газа из газовой смеси (или растворенного компонента из жидкой фазы) веществом в твердом агрегатном состоянии. Такое вещество называется сорбентом. Сорбция происходит благодаря образованию связей между атомами поглощаемого соединения и поверхностными атомами сорбента. В зависимости от типа, силы и числа этих связей, частицы (молекулы, атомы или ионы) разных веществ, удерживаются на поверхности сорбента с разной прочностью. Поэтому поглощаются им в неодинаковой степени, что позволяет разделять их смеси.

Например, можно очистить воздух от влаги и углекислого газа с помощью хлорида кальция, который практически не поглощает азот и кислород, но в значительном количестве сорбирует молекулы воды и углекислого газа.

Среди разных видов поглощения особо выделяют ионообменную сорбцию, основанную на обратимом стехиометрическом обмене ионов раствора на ионы сорбента, который в этом случае называется ионитом.

Если происходит обмен катионами, то ионит называется катионитом, если анионами – то анионитом. Когда катионами ионита выступают ионы водорода, то говорят, что катионит находится в Н-форме и является, по существу, малорастворимой полимерной многоосновной кислотой. Аналогично анионит в ОН-форме можно рассматривать как полимерное многокислотное основание.

Если через колонку с гранулами катионита в Н-форме пропускать раствор хлорида натрия, то из колонки будет выходить хлороводородная кислота соответствующей концентрации. А после прохождения образовавшейся кислоты через колонку с анионитом в ОН-форме, получается чистая вода. На этом основан метод тонкой очистки воды с помощью ионитов от растворимых в воде электролитов.

Метод очистки перекристаллизацией заключается в приготовлении насыщенного раствора данного вещества при одной температуре и выделении его кристаллов при другой, т.е. он основан на зависимости величины s от температуры. Графически эта зависимость изображена на рисунке 7.

По кривой растворимости, например, нитрата калия, находим, что из его раствора, насыщенного при 45 0 С, после охлаждения до 0 0 С выпадет в осадок около 60 г нитрата калия (в расчете на 100 г воды). Причем, если исходная соль содержала растворимые в воде примеси, то при указанном понижении температуры насыщение относительно их не наступает, поэтому они не выпадут вместе с кристаллами очищаемой соли, хотя небольшие количества примесей «захватываются» ими.

Однако повторной перекристаллизацией можно получить практически чистое вещество. Чтобы уменьшить количество примесей, сорбированных поверхностью кристаллов, промывают их после отделения от маточного раствора. (Маточным называется раствор, из которого образовался осадок.)

Метод очистки возгонкой (сублимацией) заключается в переводе соединения из твердого состояния в газообразное (без стадии плавления), и последующей кристаллизации образовавшихся паров на охлаждаемой поверхности. Этим методом можно очистить легколетучие вещества (иод, бензойную кислоту и др.) от нелетучих примесей. Для понимания физико-химической сущности возгонки рассмотрим фазовую диаграмму состояния [8], например, (рис. 13).

Каждая точка диаграммы отвечает определенному состоянию системы при данных р и Т, причем I – область твердого состояния вещества, II – жидкого, III – газообразного. Точка A, в которой сходятся линии, разделяющие фазы, называется тройной, т.к. в ней находятся в равновесии все 3 фазы. Для эта точка соответствует давлению насыщенного пара 90 мм рт.ст. и температуре 116 0 С.

Если перемещаться по прямой 1–4, т.е. выше точки A, то в точке 2 иод будет плавиться, а в точке 3 – кипеть.

Если же взять состояние системы, отвечающее точке 5 (т.е. ниже точки A), в которой твердая фаза имеет температуру T’, а давление насыщенного пара над нею равно p’, и нагревать твердый иод при постоянном р, то изменение состояния системы будет отражаться прямой 5–7. Причем в точке 6, когда давление насыщенных паров будет равно внешнему р, начнется процесс интенсивной возгонки. (Отрезок 6–7, как и 3–4, соответствует нагреванию паров в отсутствие других его фаз.)

Однако это все относится к равновесным состояниям. А в неравновесных условиях возгонка иода возможна, если давление его насыщенного пара будет хоть и меньше внешнего давления, но достаточно велико. При этом на начальном этапе нагревания твердого иода ниже, чем в точке A, и будет оставаться таким, если процесс вести в открытомсосуде, т.к. парам обеспечен свободныйуход из системы, что собственно и является возгонкой в неравновесных условиях.

Если же нагревать иод, например, в пробирке, закрытой ватой, то его пары, как более тяжелые, будут вытеснять воздух из сосуда (сквозь вату). Поэтому будет расти, и когда оно станет выше 90 мм рт.ст. (при T, обеспечивающей жидкое состояние ), он расплавится. Так получают жидкий иод.

Очистка вещества перегонкой или дистилляцией основана на превращении жидкости в пар с последующей его конденсацией. Этим методом отделяют жидкость от растворенных в ней нелетучих твердых примесей. Так, например, с помощью перегонки (дистилляции) очищают природную воду от содержащихся в ней солей. В результате получается т.н. дистиллированная вода.

Очистка газов. Полученные в реакциях газы обычно загрязнены парами воды и примесями других летучих веществ. Очищают газ, пропуская его через соединения, поглощающие эти примеси. В качестве поглотителя используют жидкие или твердые вещества, причем жидкие помещают в склянку Дрекселя, а твердые (в виде гранул) – в хлоркальциевую трубку или склянку Тищенко (рис. 14).

Выбор способа очистки газа зависит от физических и химических свойств не только самого газа, но и примесей. Например, углекислый газ, полученный в аппарате Кипа, содержит небольшое количество хлороводородной кислоты и пары воды, выделившиеся из раствора HCl. Этот газ пропускают сначала через промывалку с водой (для поглощения HCl), а затем через хлоркальциевую трубку (при этом сорбируются пары воды). И т.о. углекислый газ получается практически чистым.

а)
б)

ЛАБОРАТОРНАЯ РАБОТА «Очистка веществ»

1. Очистка воды от растворенных в ней веществ перегонкой. Собрать прибор (рис. 15). В колбу Вюрца (1) на 0,5 л налить 250 мл сульфата меди (предварительно измерив его плотность ареометром) и опустить в раствор несколько кусочков пемзы. (Зачем?)

охладитель

Закрыть отверстие колбы Вюрца пробкой с термометром (2), присоединить холодильник (3), аллонж (4), последний опустить в приемник (5). На плите (6) через асбестовую сетку нагреть раствор в колбе до кипения. При какой Т он закипит? Изменяется ли температура кипения в процессе упаривания жидкости?

Нагревание закончить, когда в приемнике соберется 100–120 мл жидкости. Измерить ее плотность. Есть ли в ней сульфат меди? Как это установить?

2. Очистка иода возгонкой. В стакан для возгонки поместите 0,3 г кристаллического иода и 0,1 г иодида калия (для удаления примесей Cl2 и Br2, содержащихся в иоде), и перемешайте стеклянной палочкой. Круглодонной колбой с холодной водой накройте стакан и осторожно нагрейте его через асбестовую сетку (табл. 6). После прекращения выделения паров (какого цвета?) отделите кристаллы от колбы, взвесьте их и определите процент выхода иода.

3. Очистка пятиводного сульфата меди перекристаллизацией. Рассчитать количество воды и , нужное для приготовления раствора, насыщенного при 60 0 С, чтобы при последующем его охлаждении до 0 0 С выделилось 7 г кристаллогидрата, используя следующие данные:

T 0 C
S, г/100 г H2O 12.9 14.8 17.2 20.0 22.8 25.1 28.1 34.9 42.4

Обычно пентагидрат содержит примеси хлорида калия, а также песок и кусочки угля. Поэтому для очистки отвесьте исходной соли на 10% больше рассчитанной массы. Отмерьте цилиндром нужный объем воды, вылейте в стакан на 50 мл, вскипятите воду и растворите в ней при перемешивании навеску очищаемой соли.

Убедитесь, что хлорид-ионы есть в приготовленном растворе. Для этого к 3 каплям его добавьте каплю раствора AgNO3 и две капли азотной кислоты. Что наблюдается? Почему? Затем нагретый до кипения раствор сульфата меди отфильтруйте через складчатый фильтр, приготовленный заранее.

Помешивая фильтрат стеклянной палочкой, охладите его до комнатной температуры, а потом до 0 0 С в кристаллизаторе с водой и льдом. Выпавшие кристаллы отделите от маточного раствора фильтрованием и промойте их (зачем?) 5‑10 мл холодной дистиллированной воды. Раствор очищенной соли, маточный раствор, и промывные воды испытайте на хлорид-ионы и сделайте выводы.

Затем снимите кристаллы соли с воронки и отжимайте их между листами фильтровальной бумаги до тех пор, пока они не перестанут прилипать к сухой стеклянной палочке. Взвесьте на технохимических весах полученную соль. Оцените массу соли в процентах по отношению к исходной навеске. Чем объясняется сравнительно низкий выход продукта, очищенного методом перекристаллизации?

4. Очистка углекислого газа. Колбу Вюрца наполнить на 1/5 объема кусочками мрамора, присоединить к ней газоотводную трубку, добавить 30 мл 20%-го раствора HCl и сразу закрыть колбу пробкой. Что наблюдается? Чем может быть загрязнен получающийся при этом углекислый газ?

Пропускать выделяющийся газ в течение 10–15 мин через склянку Дрекселя с дистиллированной водой и последовательно с ней соединенную хлоркальциевую трубку, наполненную обезвоженным сульфатом меди. (Как изменяется его цвет? Почему?). Испытать содержимое промывной склянки на присутствие ионов Cl – и H + , используя раствор AgNO3 и индикаторную бумагу соответственно. Сделать выводы.

Дата добавления: 2014-11-20 ; Просмотров: 7406 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Оцените статью
Topsamoe.ru
Добавить комментарий