Расчет скорости движения воздуха в помещении

Скорость движения воздуха определяется расстоянием, которое проходит воздух в единицу времени, и выражается в метрах в секунду. Движение воздуха способствует отдаче тепла путем проведения и конвекции при низкой температуре воздуха и путем испарения при высокой температуре и низкой относительной влажности воздуха. Усиление отдачи тепла зимой способствует охлаждению организма человека, а летом в жаркую погоду, наоборот, освобождает его от излишков тепла и тем самым улучшает самочувствие.

В помещениях при закрытых форточках и дверях скорость движения воздуха обычно не превышает 0,05-0,2 м/с. Скорость движения воздуха как правило не должна превышать 0,4 м/с, так как большие скорости вызывают неприятное ощущение сквозняка.

Для определения скорости воздуха применяются динамические анемометры, основанные на вращении током воздуха легких лопастей, обороты которых передаются счетному механизму с циферблатом и указательной стрелкой. Анемометры имеются двух систем: чашечные и крыльчатые.

Чашечный анемометр предназначается главным образом для метеорологических наблюдений в открытой атмосфере и позволяет измерять скорость движения воздуха в больших пределах от 1 до 50 м/с. В верхней части прибор имеет четыре полых полушария, которые под влиянием тока воздуха вращаются вокруг вертикальной оси. Нижний конец оси при помощи зубчатой передачи соединен со стрелками на циферблате, которые, передвигаясь по шкале, указывают число делений. Большая стрелка показывает единицы и десятки, маленькие стрелки (в зависимости от их количества) показывают сотни, тысячи и более делений. Сбоку циферблата имеется рычажок, с помощью которой включается и выключается счетчик оборотов стрелок. Перед началом измерения при выключенном счетчике записывают показания всех стрелок. Прибор устанавливают перпендикулярно воздушному потоку и дают чашечкам некоторое время вращаться вхолостую. Затем одновременно включают счетчик анемометра и пускают в ход секундомер. Наблюдение продолжают 5-10 минут, после чего счетчик выключают и записывают новые показания. По разнице в показаниях счетчика до и в конце наблюдения определяют число делений в секунду. Затем определяют скорость движения воздуха, пользуясь прилагаемым к прибору графиком.

Крыльчатый анемометр устроен так же, как чашечный, но воспринимающей частью у него являются не полушария, а легкие алюминиевые крылья, огражденные широким металлическим кольцом. Прибор более чувствителен и позволяет измерять скорость от 0,5 до 15 м/с, чаще всего используется при обследовании вентиляции. Продолжительность наблюдения ограничивается 3-4 минутами. Снятие показаний и расчет скорости производят так же, как и в случае с чашечным анемометром.

Пример. Показания прибора до измерения составляли 7425, после измерения в течение 3 мин — 7695. Таким образом, разница в показаниях 7695-7425=270 делений. Находят число делений в секунду: 270/180 = 1,5. По графику, прилагаемому к прибору, определяем, что 1,5 деления в секунду соответствуют 0, 8 м/с.

В помещениях скорость движения воздуха обычно небольшая, и анемометром ее измерить невозможно ввиду его малой чувствительности, поэтому необходимо пользоваться другим прибором — кататермометром, с помощью которого определяют малые скорости движения воздуха (менее 1 м/с).

Кататермометр представляет собой спиртовой термометр с цилиндрическим или шаровым резервуаром. В шаровом кататермометре резервуар имеет форму шара, на шкале нанесены деления от 33 до 40 °С. Для определения скорости движения воздуха, резервуар кататермометра погружают в горячую воду (60-80°С) и держат его в ней до тех пор, пока спирт не заполнит примерно половину верхнего расширения капилляра. После этого резервуар насухо вытирают, и прибор подвешивают в том месте, где нужно измерить скорость движения воздуха. Нагретый резервуар кататермометра будет постепенно отдавать тепло во внешнюю среду путем излучения, проведения и конвекции. Вследствие охлаждения прибора спирт из верхнего расширения капилляра станет переходить в резервуар. По секундомеру определяют время, в течение которого столбик спирта опустится либо с 38° до 35°С (исследование повторяют 2-3 раза и вычисляют среднее время).

Каждый кататермометр за время опускания столбика спирта с 38 до 35°С теряет с 1 см 2 поверхности резервуара определенное, постоянное для данного прибора количество тепла. Эта величина носит название фактора и обозначается F. Она указана на тыльной стороне прибора (в милликалориях). Время, в течение которого кататермометр потеряет это количество тепла, будет различно в зависимости от температуры и скорости движения воздуха, т.е. от охлаждающей способности воздуха, которую и определяют по формуле:

H = F/T,

где Н — охлаждающая способность воздуха, то есть количество тепла в милликалориях, которое теряется с 1 см 2 поверхности резервуара кататермометра за 1 с при опускании спирта с 38 до 35°С;

F — фактор прибора;

Т — время в секундах, в течение которого столбик спирта опустился с 38° до 35°С.

Определив Н, вычисляют скорость движения воздуха по формуле:

где V — скорость движения воздуха в метрах в секунду;

Н — охлаждающая способность воздуха в мкал/с·см 2 ,

Q — разность между средней температурой кататермометра (36,5°С) и температурой окружающего воздуха;

0,20 и 0,40 — эмпирические коэффициенты.

Пример. При определении охлаждающей способности воздуха в операционной на уровне 1 м от пола время падения столбика спирта (t) составляло 80 с, фактор прибора F — 496, температура воздуха 18°С.

Определим охлаждающую способность воздуха

Н = F/t = 496:80 = 6,2 мкал/с см 2

Рассчитаем Q = 36,5 0 – 18 0 = 18,5 0

Рассчитаем H/Q = 6,2 : 18,5 = 0,33

Подставляем полученные результаты в формулу:

Заключение. Скорость движения воздуха в операционной отвечает требованиям нормативной документации (см. табл.3)

Определение подвижности воздуха возможно также по специальной таблице по величине H/Q (см. табл.2).

Таблица 2

Таблица для определения скорости движения воздуха

Микроклимат, обеспеченный системами вентиляции в жилом или производственном помещении, влияет на самочувствие и работоспособность людей. Для создания комфортных условий жизнедеятельности разработаны нормы, определяющие состав воздуха. Согласитесь, регулярный воздухообмен жизненно необходим.

Мы расскажем, какой должна быть скорость воздуха в воздуховоде. Посоветуем, что нужно делать, чтобы воздушный поток всегда оставался свежим и отвечал гигиеническим нормам. У нас вы найдете подробное описание расчетных методик и перечисление правил подбора оптимального воздуховода.

Предложенная к ознакомлению информация опирается на данные нормативных справочников. Для практического освоения способов расчета приведены примеры. Текстовый материал дополнен наглядными иллюстрациями и видео, облегчающими восприятие непростой темы.

Важность воздухообмена для человека

По строительным и гигиеническим нормам, каждый жилой или производственный объект необходимо обеспечить системой вентиляции.

Главное ее назначение – сохранение воздушного баланса, создание благоприятного для работы и отдыха микроклимата. Это значит, что в атмосфере, которой дышат люди, не должно наблюдаться переизбытка тепла, влаги, загрязнений различного рода.

Нарушения в организации системы вентиляции приводят к развитию инфекционных болезней и заболеваний дыхательной системы, к снижению иммунитета, к преждевременной порче продуктов питания.

В излишне влажной и теплой среде быстро развиваются болезнетворные микроорганизмы, на стенах, потолках и даже на мебели появляются очаги плесени и грибка.

Одним из условий сохранения здорового воздушного баланса является правильное проектирование системы вентиляции. Каждая часть воздухообменной сети должна быть подобрана, исходя из объемов помещения и характеристик воздуха в нем.

Предположим, в небольшой квартире достаточно хорошо налаженной приточно-вытяжной вентиляции, тогда как в производственных цехах обязательна установка оборудования для принудительного воздухообмена.

При строительстве домов, общественных учреждений, цехов предприятий руководствуются следующими принципами:

  • каждое помещение нужно обеспечить системой вентиляции;
  • необходимо соблюдать гигиенические параметры воздуха;
  • на предприятиях следует установить устройства, увеличивающие и регулирующие скорость воздухообмена; в жилых помещениях – кондиционеры или вентиляторы при условии недостаточной вентиляции;
  • в помещениях разного назначения (например, в палатах для больных и операционной или в офисе и в комнате для курения) необходимо оборудовать разные системы.

Чтобы вентиляция соответствовала перечисленным условиям, нужно сделать расчеты и подобрать оборудование – приборы подачи воздуха и воздуховоды.

Также при устройстве вентиляционной системы необходимо правильно выбирать места забора воздуха, чтобы не допустить поступления загрязненных потоков обратно в помещения.

От размеров воздуховодов (в том числе домовых шахт) зависит эффективность воздухообмена. Выясним, каковы нормы скорости потока воздуха в вентиляции, указанные в санитарной документации.

Правила определения скорости воздуха

Скорость движения воздуха тесно взаимосвязана с такими понятиями, как уровень шума и уровень вибрации в вентиляционной системе. Проходящий по каналам воздух создает определенный шум и давление, которые возрастают с увеличением количества поворотов и изгибов.

Чем больше сопротивление в трубах, тем ниже скорость воздуха и тем выше производительность вентилятора. Рассмотрим нормы сопутствующих факторов.

№1 — санитарные нормы уровня шума

Нормативы, указанные в СНиП, касаются помещений жилого (частных и многоквартирных домов), общественного и производственного типа.

В таблице, представленной ниже, вы можете сравнить нормы для помещений различного типа, а также территорий, прилегающих к зданиям.

Одной из причин увеличения принятых норм как раз может быть неправильно спроектированная система воздуховодов.

Уровни звукового давления представлены в другой таблице:

№2 — уровень вибрации

Мощность работы вентиляторов напрямую связана с уровнем вибрации.

Максимальный порог вибрации зависит от нескольких факторов:

  • размеров воздуховода;
  • качества прокладок, обеспечивающих снижение уровня вибрации;
  • материала изготовления труб;
  • скорости потока воздуха, проходящего по каналам.

Нормы, которых стоит придерживаться при выборе вентиляционных устройств и при расчетах, касающихся воздуховодов, представлены в следующей таблице:

Скорость воздуха в шахтах и каналах не должна влиять на увеличение показателей вибрации, как и на связанные с ними параметры звуковых колебаний.

№3 — кратность воздухообмена

Очистка воздуха происходит благодаря процессу воздухообмена, который подразделяется на естественный или принудительный.

В первом случае он осуществляется при открывании дверей, фрамуг, форточек, окон (и называется аэрацией) или просто путем инфильтрации через щели на стыках стен, дверей и окон, во втором – с помощью кондиционеров и вентиляционного оборудования.

Смена воздуха в комнате, подсобном помещении или цеху должна происходить несколько раз в час, чтобы степень загрязнения воздушных масс была допустимой. Количество смен – это кратность, величина, также необходимая для определения скорости воздуха в вентканалах.

Кратность вычисляют по следующей формуле:

N=V/W,

  • N – кратность воздухообмена, раз в 1 час;
  • V – объем чистого воздуха, заполняющего помещение за 1 ч, м³/ч;
  • W – объем помещения, м³.

Чтобы не выполнять дополнительные расчеты, средние показатели кратности собраны в таблицы.

Например, для жилых помещений подходит следующая таблица кратности воздухообмена:

Что случится, если нормативы кратности воздухообмена не будут соблюдаться или будут, но в недостаточной степени?

Произойдет одно из двух:

  • Кратность ниже нормы. Свежий воздух прекращает замещать загрязненный, вследствие чего в помещении увеличивается концентрация вредных веществ: бактерий, болезнетворных микроорганизмов, опасных газов. Количество кислорода, важного для дыхательной системы человека, уменьшается, а углекислого газа, напротив, увеличивается. Влажность повышается до максимума, что чревато появлением плесени.
  • Кратность выше нормы. Возникает, если скорость перемещения воздуха в каналах превышает норму. Это негативно влияет на температурный режим: помещение просто не успевает нагреваться. Излишне сухой воздух провоцирует болезни кожи и дыхательного аппарата.

Чтобы кратность обмена воздуха соответствовала санитарным нормам, следует установить, убрать или отрегулировать вентиляционные приборы, а при необходимости и заменить воздуховоды.

Алгоритм вычисления скорости воздуха

Учитывая вышеизложенные условия и технические параметры конкретно взятого помещения, можно определить характеристики вентиляционной системы, а также рассчитать скорость воздуха в трубах.

Опираться следует на кратность воздухообмена, которая для данных расчетов является определяющим значением.

Для уточнения параметров расхода пригодится таблица:

Чтобы самостоятельно произвести расчеты, нужно знать объем помещения и норму кратности воздухообмена для комнаты или зала заданного типа.

Например, необходимо узнать параметры для студии с кухней общим объемом 20 м³. Возьмем минимальное значение кратности для кухни – 6. Получается, что в течение 1 часа воздушные каналы должны переместить около L = 20 м³*6 =120 м³.

Также необходимо узнать площадь сечения воздуховодов, установленных в систему вентиляции. Она вычисляется по следующей формуле:

S = πr 2 = π/4*D 2 ,

  • S — площадь сечения воздуховода;
  • π — число «пи», математическая константа, равная 3,14;
  • r — радиус сечения воздуховода;
  • D — диаметр сечения воздуховода.

Предположим, что диаметр воздуховода круглой формы равен 400 мм, подставляем его в формулу и получаем:

S = (3,14*0,4²)/4 = 0,1256 м²

Зная площадь сечения и расход, можем вычислить скорость. Формула расчета скорости воздушного потока:

V = L/3600*S,

  • V — скорость воздушного потока, (м/с);
  • L — расход воздуха, (м³/ч);
  • S — площадь сечения воздушных каналов (воздуховодов), (м²).

Подставляем известные значения, получаем: V = 120/(3600*0,1256) = 0,265 м/с

Следовательно, чтобы обеспечить необходимую кратность воздухообмена (120 м 3 /ч) при использовании круглого воздуховода с диаметром 400 мм, потребуется установить оборудование, позволяющее увеличить скорость воздушного потока до 0,265 м/с.

Следует помнить, что описанные ранее факторы – параметры уровня вибрации и уровня шума – напрямую зависят от скорости движения воздуха.

Если шум будет превышать показатели нормы, придется снижать скорость, следовательно, увеличивать сечение воздуховодов. В некоторых случаях достаточно установить трубы из другого материала или заменить изогнутый фрагмент канала на прямой.

Рекомендованные нормы скорости воздухообмена

Во время составления проекта здания выполняют расчет каждого отдельного участка. На производстве это цеха, в жилых домах – квартиры, в частном доме – поэтажные блоки или отдельные комнаты.

Перед установкой системы вентиляции известно, каковы маршруты и размеры главных магистралей, какой геометрии необходимы вентиляционные каналы, какой размер труб является оптимальным.

Расчеты, связанные с передвижением воздушных потоков внутри жилых и производственных зданий, относят к разряду наиболее сложных, поэтому заниматься ими обязаны опытные квалифицированные специалисты.

Рекомендованная скорость воздуха в воздуховодах обозначена в СНиП — нормативной государственной документации, и при проектировании или сдаче объектов ориентируются именно на нее.

Считается, что внутри помещений скорость воздуха не должна превышать показатель 0,3 м/с.

Исключения составляют временные технические обстоятельства (например, ремонтные работы, установка строительной техники и др.), во время которых параметры могу превышать нормативы максимум на 30 %.

В больших по объему помещениях (гаражах, производственных цехах, складах, ангарах) часто вместо одной вентиляционной системы действуют две.

Нагрузка делится пополам, следовательно, и скорость воздуха подбирают так, чтобы она обеспечивала по 50 % общего расчетного объема перемещения воздуха (удаления загрязненного или подачи чистого).

При возникновении форс-мажорных обстоятельств возникает необходимость в резкой смене скорости воздуха или полной приостановке работы вентиляционной системы.

Например, по требованиям пожарной безопасности скорость движения воздуха снижают до минимума в целях предотвращения распространения по соседним помещениям огня и дыма во время возгорания.

С этой целью в воздуховодах и на переходных участках монтируют отсекатели и клапаны.

Тонкости выбора воздуховода

Зная результаты аэродинамических расчетов, можно правильно подобрать параметры воздуховодов, а точнее – диаметр круглых и габариты прямоугольных сечений. Кроме того, параллельно можно выбрать прибор принудительной подачи воздуха (вентилятор) и определить потери давления в процессе передвижения воздуха по каналу.

Зная величину расхода воздуха и значение скорости его движения, можно определить, какого сечения воздуховоды потребуются.

Для этого берется формула, обратная формуле для подсчета расхода воздуха:

S = L/3600*V.

Используя результат, можно посчитать диаметр:

D = 1000*√(4*S/π),

  • D — диаметр сечения воздуховода;
  • S — площадь сечения воздушных каналов (воздуховодов), (м²);
  • π — число «пи», математическая константа, равная 3,14;.

Полученное число сопоставляют с заводскими стандартами, допущенными по ГОСТ, и выбирают наиболее близкие по диаметру изделия.

Если необходимо выбрать прямоугольные, а не круглые воздуховоды, то следует вместо диаметра определить длину/ширину изделий.

При выборе ориентируются на примерное сечение, используя принцип a*b ≈ S и таблицы типоразмеров, предоставленные заводами-изготовителями. Напоминаем, что по нормам отношение ширины (b) и длины (a) не должно превышать 1 к 3.

Общепринятые стандарты прямоугольных каналов: минимальные размеры – 100 мм х 150 мм, максимальные – 2000 мм х 2000 мм. Круглые воздуховоды хороши тем, что обладают меньшим сопротивлением, соответственно, имеют минимальные показатели уровня шума.

В последнее время специально для внутриквартирного применения выпускают удобные, безопасные и легкие пластиковые короба.

Выводы и полезное видео по теме

Полезные видеоролики научат вас работать с физическими величинами и помогут лучше представить, как действует вентиляционная система.

Видео #1. Расчет параметров естественной вентиляции с помощью компьютерной программы:

Видео #2. Полезная информация об устройстве вентиляционной системы в строящемся частном доме:

Информацию статьи можно использовать в ознакомительных целях и для того, чтобы лучше представить себе работу вентиляционной системы.

Для более точных расчетов скорости движения воздуха при проектировании домашних коммуникаций рекомендуем обратиться к инженерам, которые знают нюансы устройства вентиляции и помогут правильно выбрать размеры воздуховодов.

Желающие поделиться личным опытом, полученным при устройстве воздуховодов, интересными фактами и специфическими сведениями, пишите, пожалуйста, комментарии в расположенном ниже блоке. Задавайте вопросы по спорным моментам. Мы или посетители сайта с удовольствием поучаствуем в обсуждении.

Параметры показателей микроклимата определяются положениями ГОСТ 12.1.2.1002-00, 30494-96, СанПин 2.2.4.548, 2.1.2.1002-00. На основании существующих государственных нормативных актов разработан Свод правил СП 60.13330.2012. Скорость воздуха в воздуховоде должна обеспечивать выполнение существующих норм.

Что учитывается при определении скорости движения воздуха

Для правильного выполнения расчетов проектировщики должны выполнять несколько регламентируемых условий, каждое из них имеет одинаково важное значение. Какие параметры зависят от скорости движения воздушного потока?

Уровень шума в помещении

В зависимости от конкретного использования помещений санитарные нормы устанавливают следующие показатели максимального звукового давления.

Таблица 1. Максимальные значения уровня шума.

Превышение параметров допускается только в кратковременном режиме во время пуска/остановки вентиляционной системы или дополнительного оборудования.
Уровень вибрации в помещении Во время работы вентиляторов продуцируется вибрация. Показатели вибрации зависят от материала изготовления воздуховодов, способов и качества виброгасящих прокладок и скорости движения воздушного потока по воздуховодам. Общие показатели вибрации не могут превышать установленные государственными организациями предельные значения.

Таблица 2. Максимальные показатели допустимой вибрации.

При расчетах подбирается оптимальная скорость воздуха, не усиливающая вибрационные процессы и связанные с ними звуковые колебания. Система вентиляции должна поддерживать в помещениях определенный микроклимат.

Значения по скорости движения потока, влажности и температуре содержатся в таблице.

Таблица 3. Параметры микроклимата.

Еще один показатель, принимаемый во внимание во время расчета скорости потока – кратность обмена воздуха в системах вентиляции. С учетом их использования санитарные нормы устанавливают следующие требования по воздухообмену.

Таблица 4. Кратность воздухообмена в различных помещениях.

Бытовые
Бытовые помещения Кратность воздухообмена
Жилая комната (в квартире или в общежитии) 3м 3 /ч на 1м 2 жилых помещений
Кухня квартиры или общежития 6-8
Ванная комната 7-9
Душевая 7-9
Туалет 8-10
Прачечная (бытовая) 7
Гардеробная комната 1,5
Кладовая 1
Гараж 4-8
Погреб 4-6
Промышленные
Промышленные помещения и помещения большого объема Кратность воздухообмена
Театр, кинозал, конференц-зал 20-40 м 3 на человека
Офисное помещение 5-7
Банк 2-4
Ресторан 8-10
Бар, Кафе, пивной зал, бильярдная 9-11
Кухонное помещение в кафе, ресторане 10-15
Универсальный магазин 1,5-3
Аптека (торговый зал) 3
Гараж и авторемонтная мастерская 6-8
Туалет (общественный) 10-12 (или 100 м 3 на один унитаз)
Танцевальный зал, дискотека 8-10
Комната для курения 10
Серверная 5-10
Спортивный зал не менее 80 м 3 на 1 занимающегося и не менее 20 м 3 на 1 зрителя
Парикмахерская (до 5 рабочих мест) 2
Парикмахерская (более 5 рабочих мест) 3
Склад 1-2
Прачечная 10-13
Бассейн 10-20
Промышленный красильный цел 25-40
Механическая мастерская 3-5
Школьный класс 3-8

Алгоритм расчетов Скорость воздуха в воздуховоде определяется с учетом всех вышеперечисленных условий, технические данные указываются заказчиком в задании на проектирование и монтаж вентиляционных систем. Главный критерий при расчетах скорости потока – кратность обмена. Все дальнейшие согласования делаются за счет изменения формы и сечения воздуховодов. Расход в зависимости от скорости и диаметра воздуховода можно взять из таблицы.

Таблица 5. Расход воздуха в зависимости от скорости потока и диаметра воздуховода.

Самостоятельный расчет

К примеру, в помещении объемом 20 м 3 согласно требованиям санитарных норм для эффективной вентиляции нужно обеспечить трехкратную смену воздуха. Это значит, что за один час сквозь воздуховод должно пройти не менее L = 20 м 3 ×3= 60 м 3 . Формула расчета скорости потока V= L / 3600× S, где:

V – скорость потока воздуха в м/с;

L – расход воздуха в м 3 /ч;

S – площадь сечения воздуховодов в м 2 .

Возьмем круглый воздуховод Ø 400 мм, площадь сечения равняется:

В нашем примере S = (3.14×0,4 2 м)/4=0,1256 м 2 . Соответственно, для обеспечения нужной кратности обмена воздуха (60 м 3 /ч) в круглом воздуховоде Ø 400 мм (S = 0,1256 м 3 ) скорость воздушного потока равняется: V= 60/(3600×0,1256) ≈ 0,13 м/с.

С помощью этой же формулы при заранее известной скорости можно рассчитать объем воздуха, перемещающийся по воздуховодам в единицу времени.

L = 3600×S (м 3 )×V(м/с). Объем (расход) получается в квадратных метрах.

Как уже описывалось ранее, от скорости воздуха зависят и показатели шумности вентиляционных систем. Для минимизации негативного влияния этого явления инженеры сделали расчеты максимально допустимых скоростей воздуха для различных помещений.

Таблица 6. Рекомендованные параметры скоростей воздуха

Рекомендуемые значения скорости
Квартиры Офисы Производственные помещения
Приточные решетки 2,0-2,5 2,0-2,5 2,5-6,0
Магистральные воздуховоды 3,5-5,0 3,5-6,0 6,0-11,0
Ответвления 3,0-5,0 3,0-6,5 4,0-9,0
Воздушные фильтры 1,2-1,5 1,5-1,8 1,5-1,8
Теплообменники 2,2-2,5 2,5-3,0 2,5-3,0

По такому же алгоритму определяется скорость воздуха в воздуховоде при расчете подачи тепла, устанавливаются поля допусков для минимизации потерь на содержание зданий в зимний период времени, подбираются вентиляторы по мощности. Данные по воздушному потоку требуются и для уменьшения потерь давления, а это позволяет повышать коэффициент полезного действия вентиляционных систем и сокращает потребление электрической энергии.

Расчет выполняется по каждому отдельному участку, с учетом полученных данных подбираются параметры главных магистралей по диаметру и геометрии. Они должны успевать пропускать откачанный воздух из всех отдельных помещений. Диаметр воздуховодов выбирается таким образом, чтобы минимизировать шумность и потери на сопротивление. Для расчетов кинематической схемы важны все три показатели вентиляционной системы: максимальный объем нагнетаемого/удаляемого воздуха, скорость передвижения воздушных масс и диаметр воздуховодов. Работы по расчету вентиляционных систем относятся к категории сложных с инженерной точки зрения, выполнять их могут только профессиональные специалисты со специальным образованием.

Для обеспечения постоянных значений скорости воздуха в каналах с различным сечением используются формулы:

После расчета за окончательные данные принимаются ближайшие значения стандартных трубопроводов. За счет этого уменьшается время монтажа оборудования и упрощается процесс его периодического обслуживания и ремонта. Еще один плюс – уменьшение сметной стоимости вентиляционной системы.

Для воздушного обогрева жилых и производственных помещений скорости регулируются с учетом температуры теплоносителя на входе и выходе, для равномерного рассеивания потока теплого воздуха продумывается схема монтажа и размеры вентиляционных решеток. Современные системы воздушного обогрева предусматривают возможность автоматической регулировки скорости и направления потоков. Температура воздуха не может превышать +50°С на выходе, расстояние до рабочего места не менее 1,5 м. Скорость подачи воздушных масс нормируется действующими государственными стандартами и отраслевыми актами.

Во время расчетов по требованию заказчиков может учитываться возможность монтажа дополнительных ответвлений, с этой целью предусматривается запас производительности оборудования и пропускной способности каналов. Скорости потока рассчитываются таким образом, чтобы после увеличения мощности вентиляционных систем они не создавали дополнительную звуковую нагрузку на присутствующих в помещении людей.

Выбор диаметров выполняется от минимально приемлемого, чем меньше габариты – тем универсальное система вентиляции, тем дешевле обходится ее изготовление и монтаж. Системы местных отсосов рассчитываются отдельно, могут работать как в автономном режиме, так и подключаться к существующим вентиляционным системам.

Государственные нормативные документы устанавливают рекомендованные скорости движения в зависимости от расположения и назначения воздуховодов. При расчетах нужно придерживаться этих параметров.

Таблица 7. Рекомендованные скорости воздуха в различных каналах

Тип и место установки воздуховода и решетки Вентиляция
Естественная Механическая
Воздухоприемные жалюзи 0,5-1,0 2,0-4,0
Каналы приточных шахт 1,0-2,0 2,0-6,0
Горизонтальные сборные каналы 0,5-1,0 2,0-5,0
Вертикальные каналы 0,5-1,0 2,0-5,0
Приточные решетки у пола 0,2-0,5 0,2-0,5
Приточные решетки у потолка 0,5-1,0 1,0-3,0
Вытяжные решетки 0,5-1,0 1,5-3,0
Вытяжные шахты 1,0-1,5 3,0-6,0

Внутри помещений воздух не может двигаться со скоростью более 0,3 м/с, допускается кратковременное превышение параметра не более чем 30%. Если в помещении имеется две системы, то скорость воздуха в каждой из них должна обеспечивать не менее 50% расчетного объема подачи или удаления воздуха.

Пожарные организации выдвигают свои требования по скорости перемещения воздушных масс в воздуховодах в зависимости от категории помещения и особенностей технологического процесса. Нормативы направлены на уменьшение скорости распространения дыма или огня по воздуховодам. В случае необходимости на вентиляционных системах должны устанавливаться клапаны и отсекатели. Срабатывание устройств происходит после сигнала датчика или выполняется вручную ответственным лицом. В одну систему вентиляции можно подключать только определенные группы помещений.

В холодный период времени в отапливаемых зданиях температура воздуха в результате функционирования вентиляционной системы не может понижаться ниже нормируемых. Нормируемая температура обеспечивается до начала рабочей смены. В теплый период времени эти требования не актуальны. Движение воздушных масс не должно ухудшать предусмотренные СанПин 2.1.2.2645 нормативы. Для достижения нужных результатов во время проектирования систем изменяется диаметр воздуховодов, мощность и количество вентиляторов и скорости потока.

Принимаемые расчетные данные по параметрам движения в воздуховодах должны обеспечивать:

  1. Выполнение параметров микроклимата в помещениях, поддержку качества воздуха в регламентируемых пределах. При этом принимаются меры по снижению непродуктивных тепловых потерь. Данные берутся как из существующих нормативных документов, так и из технического задания заказчиков.
  2. Скорость движения воздушных масс в рабочих зонах не должна вызывать сквозняки, обеспечивать приемлемую комфортность пребывания в помещении. Механическая вентиляция предусматривается только в тех случаях, когда добиться желаемых результатов за счет естественной невозможно. Кроме этого, механическая вентиляция обязательно монтируется в цехах с вредными условиями труда.

Во время расчетов показателей движения воздуха в системах с естественной вентиляцией берется среднегодовое значение разности плотности внутреннего и наружного воздуха. Минимальные фактические данные по производительности должны обеспечивать допустимые нормативные значения кратности обмена воздуха.

Оцените статью
Topsamoe.ru
Добавить комментарий