Принцип работы гидравлической машины

Тема: объемные и центробежные Гидравлические машины. Принцип работы гидропривода

9.1. Теоретические основы гидромашин и гидроприводов.

Гидравлические машины — механизмы, сообщающие протекающей через них жидкости механическую энергию (насос), либо получающие от жидкости часть механической энергии для передачи ее рабочему органу с целью полезного использования (гидравлический двигатель).

Насосы и гидродвигатели применяют в гидропередачах, назначением которых является передача механической энергии от первичного двигателя к исполнительному рабочему органу, а также преобразование вида и скорости движения рабочего органа. Гидропередача состоит из насоса, гидродвигателя, трубопроводов и регулирующей гидроаппаратуры.

В современной технике применяется большое количество разновидностей гидромашин. Однако их можно разделить на два основных класса: лопастные и объемные.

9.2. Лопастные гидромашины.

9.2.1. Принцип действия и основные параметры лопастных гидромашин.

Рабочим органом лопастной гидромашины является рабочее колесо, снабженное лопастями. Энергия от рабочего колеса жидкости (или, наоборот, от жидкости колесу) передается путем динамического взаимодействия лопастей с обтекающей их жидкостью. при этом происходит перемещение жидкости от центра колеса к его периферии (центробежные насосы) или в осевом направлении (осевые насосы).

1 — подвод ; 2 — рабочее колесо ; 3 — отвод ; 4 — диффузор

Проточная часть насоса состоит из трех основных элементов: подвода, рабочего колеса и отвода. По подводу жидкость поступает в рабочее колесо в осевом направлении. Рабочее колесо состоит из двух дисков, между которыми находятся лопатки, изогнутые чаще всего в сторону, противоположную вращению. В рабочем колесе жидкость движется от оси колеса к его периферии и собирается в улиткообразном отводе. На выходе из отвода устанавливается диффузор для некоторого повышения давления.

Поток жидкости между лопатками характеризуется величиной и направлением абсолютной скорости жидких частиц , которая может быть определена путем сложения окружной скорости рабочего колеса и относительной скорости движения жидких частиц вдоль лопасти .

При большом числе лопастей относительное движение жидкости вдоль лопасти можно рассматривать как струйное, и скорости направлены по касательной к лопасти.

На основе закона об изменении момента количества движения Эйлером выведено основное уравнение лопастных гидромашин:

— для насоса;

— для турбины.

В турбине происходит обратное движение жидкости от периферии рабочего колеса к его центру.

Мощность, сообщаемая рабочим колесом жидкости:

, где

Q — подача жидкости насосом, м3/с.

9.3. Центробежные насосы

В технике применяются центробежные насосы самых различных конструкций, классифицируемых по следующим признакам:

1) По числу ступеней давления — одноступенчатые, двухступенчатые и многоступенчатые. Состоят из ряда последовательно насаженных на один вал рабочих колес. Жидкость с периферии первого колеса поступает на центр второго и так далее. При этом увеличивается напор (давление) на выходе насоса.

2) Насосы с односторонним и двухсторонним входом. При том же напоре насосы с двухсторонним входом обеспечивают большую подачу жидкость.

3) Насосы с вертикальным и горизонтальным валом. Наиболее распространенным типом центробежного насоса является одноступенчатый насос с односторонним входом и горизонтальным валом.

4) числу колес [одноступенчатые (одноколесные), многоступенчатые (многоколесные)]; кроме того, одноколесные насосы выполняют с консольным расположением вала – консольные;

5) напору [низкого напора до 2 кгс/см2 (0,2 МН/м2), среднего напора от 2 до 6 кгс/см2 (от 0,2 до 0,6 МН/м2), высокого напора больше 6 кгс/см2 (0,6 МН/м2)];

6) способу подвода воды к рабочему колесу [с односторонним входом воды на рабочее колесо, с двусторонним входом воды (двойного всасывания)];

7 способу разъема корпуса (с горизонтальным разъемом корпуса, с вертикальным разъемом корпуса);

8) способу отвода жидкости из рабочего колеса в спиральный канал корпуса (спиральные и турбинные). В спиральных насосах жидкость отводится непосредственно в спиральный канал; в турбинных жидкость, прежде чем попасть в спиральный канал, проходит через специальное устройство – направляющий аппарат (неподвижное колесо с лопатками);

9) степени быстроходности рабочего колеса (тихоходные, нормальные, быстроходные);

10 роду перекачиваемой жидкости (водопроводные, канализационные, кислотные и щелочные, нефтяные, землесосные и др.);

11) способу соединения с двигателем [приводные (с редуктором или со шкивом), непосредственного соединения с электродвигателем с помощью муфт]. Насосы со шкивным приводом встречаются в настоящее время редко.

Работа насоса характеризуется его подачей Q, напором HH, потребляемой мощностью NH, коэффициентом полезного действия hH и частотой вращения рабочего колеса.

Мощность насоса равна:

r — кг / м3 ; g — м / с2 ; Q — м3 / с ; HH — м ; NТЕОР — Вт

Коэффициент полезного действия насоса учитывает: механические потери, объемные потери и гидравлические потери:

Механические потери обуславливаются трением в подшипниках и в уплотнениях вала рабочего колеса. Характеризуются hМ.

Объемные потери связаны с перетеканием жидкости из отвода рабочего колеса через зазоры обратно в подвод. Характеризуется hО.

Гидравлические потери связаны с преодолением жидкостью гидравлического сопротивления аодвода, рабочего колеса и отвода. Характеризуется hГ.

9.4. Гидродинамические передачи

Гидродинамические передачи (гидропередачи) состоят из соосно расположенных и предельно сближенных в общем корпусе рабочих органов лопастного насоса и гидравлической турбины. Они передают мощность от первичного двигателя приводимой машине посредством потока жидкости. Жесткое соединение входного и выходного валов при этом отсутствует.

Гидропередачи разделяют на гидродинамические муфты (гидромуфты), которые передают мощность, не изменяя момента, и гидродинамические трансформаторы (гидротрансформаторы), способные изменять передаваемый момент.

Гидромуфты состоят из расположенных в общем корпусе 3 насосного колеса 1 и турбинного колеса 2. Насосное колесо соединено с валом двигателя, а турбинное колесо соединено с валом приводимой машины.

Лопасти насосного и турбинного колес прикреплены к торообразным направляющим поверхностям, которые образуют рабочие полости, в которых циркулирует поток жидкости (чаще всего маловязкого минерального масла), обтекающий лопасти колес.

Насосное колесо получает энергию от двигателя и сообщает посредством своих лопастей жидкости. Поток жидкости обтекает лопасти турбинного колеса, приводит его во вращение и сообщает при этом энергию, используемую приводной машиной.

Гидропередачи способны ограничивать момент сопротивления M2 и согласовывать его пульсации при неравномерной нагрузке ударного характера. Этим они защищают двигатель и механическую часть трансмиссии от перегрузок. Гидропередачи устраняют перегрузки при пусках двигателя и разгоне приводимых объектов с большой инерцией.

В гидротрансформаторах между насосным и турбинным колесами устанавливают колесо реактора. Это дает возможность бесступенчатого изменения передаваемого момента в зависимости от изменения частоты вращения выходного вала. При возрастании сопротивления потребителя и следовательно, при снижении частоты вращения выходного вала передаваемый момент увеличивается. При этом улучшается использование двигателя по мощности.

9.5. Объемные гидромашины.

9.5.1. Принцип действия и основные параметры объемных гидромашин.

Под общим названием объемные гидромашины объединяют объемные насосы и гидродвигатели. Объемные насосы служат для подачи жидкости под давлением, а гидродвигатели — для преобразования потенциальной энергии давления жидкости в механическую исполнительного органа. В современных гидроприводах применяют настолько высокое давление, что по сравнению с ними скоростной и геометрический напоры пренебрежимо малы. Поэтому расчет преимущественно ведется в давлениях, а не в напорах.

Отличительной особенностью объемных гидромашин является возвратно-поступательное или вращательное движение вытеснителя, выполненного в виде скользящего или вращающегося поршня. В объемной гидромашине под воздействием поршня происходит изменение потенциальной энергии давления при практически неизменных величинах кинетической энергии и потенциальной энергии положения.

По конструкции объемные гидромашины разделяют на поршневые, роторно-поршневые, роторно-пластинчатые и роторно-зубчатые. Объемные гидромашины могут выступать в роли насоса и в роли гидродвигателя, т. е. они взаимо обратимы.

Принцип действия объемных гидромашин можно показать напримере поршневого насоса.

2 — Корпус — цилиндр;

3 — Выпускной клапан;

4 — Впускной клапан;

5 — Резервуар — питатель;

6 — Предохранительный клапан.

При движении поршня вправо давление в рабочей полости уменьшается. Выпускной клапан 3 закрывается, а впускной клапан 4 открывается и жидкость под действием атмосферного давления устремляется в рабочую полость насоса.

При движении поршня налево, впускной клапан закрывается, а выпускной, наоборот, открывается и жидкость из рабочей зоны вытесняется в поглотительный трубопровод.

Благодаря таким циклическим движениям поршня осуществляется подача жидкости в трубопровод.

Давление p, создаваемое насосом:

При полной герметичности рабочего объема подача жидкости объемной гидромашины не зависит от давления. Теоретически подача определяется величиной рабочего объема и частотой циклов n:

,

где s — ход поршня.

Теоретическая характеристика объемной гидромашины представляет вертикальную линию.

В действительности рабочий объем невозможно выполнить абсолютно герметичным. При любом давлении имеют место утечки жидкости через зазоры в поршне и клапанах. Кроме того, во избежание поломки ОГМ от чрезмерно большого давления в гидросистеме устанавливают предохранительный клапан на определенной давление pA.

Поэтому действительная подача Q будет меньше теоретической и равна:

; — объемный кпд.

9.5.2. Конструктивные схемы ОГМ и их основные характеристики.

9.5.2.1. Характеристики поршневого насоса.

Принципиальная схема схема работы поршневого насоса рассмотрена ранее. Подача поршневого насоса:

,

где V0 — рабочий объем, равный

,

где s0 — ход поршня;

h0 — объемный кпд насоса, учитывающий утечки жидкости;

n — частота циклов.

Достоинством поршневого насоса является их способность к самовсасыванию.

Подача поршневого насоса пульсирующая ввиду наличия двух тактов:

* всасывание жидкости в рабочую полость;

* вытеснение жидкости в питательный трубопровод.

9.5.2.2. Роторно-поршневые гидромашины

Подача одноцилиндровых поршневых насосов отличается большой неравномерностью. В некоторых случаях это неприемлемо. Для устранения неравномерности подачи можно идти по пути увеличения числа цилиндров, которые объединяются в одном блоке, а движение поршней сдвинуто по фазе относительно друг друга.

4 — всасывающая полость;

5 — нагнетательная полость.

Вытеснение жидкости осуществляется несколькими поршнями последовательно, приводимыми в движение двигателями вращательного действия. Такие многоцилиндровые поршневые гидромашины называют роторно-поршневые. Характерной особенностью таких машин является отсутствие всасывающих и питательных клапанов.

Различают радиально-поршневые и аксиально-поршенвые гидромашины.

В радиально-поршневых гидромашинах ротор 1 расположен эксцентрично статора 2. В роторе имеются радиальные цилиндрические отверстия — цилиндры. Поршень 3 при вращении ротора совершает в цилиндре возвратно-поступательные движения, скользя своими сферическими головками по внутренней поверхности статора. Донышки цилиндра имеют сверления и сообщаются поочередно с верхним и с нижним сегментами распределительной цапоры: 5 — нагнететельным и 4 — всасывающим.

Таким образом, при данном направлении вращения ротора верхний поршень будет двигаться под действием пружины вверх и совершать такт всасывания жидкости, а нижний поршень будет двигаться к донышку цилиндра и вытеснять жидкость в нагнетательный сегмент. За один оборот ротора поршень совершает полный цикл: всасывание и нагнетание. Но поскольку цилиндров несколько и они сдвинуты по фазе, подача становится более равномерной:

;

где d — диаметр поршня;

s0 — ход поршня = 2 × e;

z — число цилиндров;

n — частота вращения ротора;

h0 — объемный кпд.

Роторно-поршневые насосы обратимы. Они могут работать в качестве насоса и в качестве двигателя.

У аксиально-поршневых гидромашин цилиндры расположены в аксиальном направлении.

9.6. Роторные гидромашины.

Роторно-пластинчатые гидромашины являются одними из наиболее простых объемных гидромашин. Рассмотрим схему роторно-пластинчатого насоса.

Ротор 1 размещен между двумя, плотно прижатыми к нему дисками. В радиальных пазах ротора установлены пластины 3. Ось ротора расположена эксцентрично по отношению к статору 2.

Прижатые к статору с помощью пружин пластины вращаются вместе с ротором, совершая в пазах возвратно-поступательные движения.

Из-за эксцентриситета объем между поастинами в левой верхней части увеличивается, давление уменьшается и туда устремляется жидкость. Жидкость из всасывающей полости переносится в нагнетательную полость, где объем между пластинами уменьшается и вытесняется в нагнетательный трубопровод.

Подача роторно-пластинчатого насоса:

,

где e — эксцентриситет;

r — внутренний радиус статора;

b — ширина пластин;

n — частота вращения ротора.

Роторно-пластинчатые гидромашины обратимые.

9.7. Шестереночные насосы.

Конструкция шестереночного насоса предельно проста. Главными рабочими деталями являются две одинаковые шестерни, находящиеся в зацеплении и помещенные в корпус между двумя плотно прижатыми к ним дисками.

1 — ведущая шестерня

2 — ведомая шестерня

При вращении шестерен в зоне А выхода зубьев из зацепления образуется разрежение (вакуум) и туда устремляется жидкость из всасывающего трубопровода, заполняя пространство между зубьями. Далее жидкость переносится в зону B, где в пространство между зубьями одной шестерни входят зубья другой шестерни, вытесняя жидкость в нагнетательный трубопровод.

,

где 2×m — высота зуба ( m — модуль зацепления );

DН — диаметр начальной окружности шестерни;

b — ширина шестерни;

n — частота вращения.

Шестереночные объемные гидромашины обратимые.

9.8. Винтовые гидромашины.

Основными рабочими органами винтовой гидромашины являются винты, размещенные в корпусе, с весьма малым зазором.

Впадины между зубьями винтов заполняются жидкостью, которая при вращении винта переносится из всасывающей полости в нагнетательную.

По числу винтов различают: одно, двух и трехвинтовые гидромашины. Наибольшее распространение получили трехвинтовые гидромашины с циклоидальным зацеплением.

Подача винтового насоса:

,

где k — коэффициент, зависящий от геометрических характеристик нарезки;

DН — диаметр основной окружности ведущего винта;

n — частота вращения.

9.9.Рабочие жидкости ОГМ

В зависимости от назначения гидромашины рабочей жидкостью могут быть самые различные жидкости: вода, нефтяные масла, синтетические жидкости, спиртово-глицериновые смеси и другие.

Принципиально, объемные гидромашины могут работать на всякой капельной жидкости. Однако рабочая жидкость, выполняя функцию промежуточной Среды, одновременно является и смазывающим веществом для деталей гидромашины. Поэтому к жидкости предъявляются противоречивые требования: с одной стороны, для уменьшения гидравлических потерь жидкость должна обладать малой вязкостью, а с другой стороны, для уменьшения утечек через зазоры и уплотнения жидкость должна образовывать прочную масляную пленку. Наиболее полно этим требованиям удовлетворяют маловязкие нефтяные маста высокой очистки.

Свойства рабочей жидкости оказывают существенное влияние на работоспособность и долговечность гидромашин. К рабочим жидкостям предъявляются следующие требования:

1. Рабочие жидкости в уплотнениях должны создавать прочную масляную пленку.

2. Для обеспечения высокой точности, долговечности и безотказной работы жидкость должна обладать антикоррозионными свойствами.

3. Рабочая жидкость должна обладать малой вязкостью и хорошими вязкостно-температурными свойствами в пределах определенного диапазона температур.

4. Жидкость должна быть чистой и однородной.

5. Рабочая жидкость должна иметь стабильный модуль упругости. Она не должна поглощать и выделять газы, особенно при больших перепадах давления.

Гидравли́ческие маши́ны (гидромаши́ны) — гидравлические механизмы, в которых осуществляется передача энергии от потока жидкой среды к движущемуся (вращающемуся) твердому телу (гидравлические турбины) или от движущегося (вращающегося) твердого тела к жидкости (насосы) [1] . Термин «гидравлические машины» часто используют как обобщающий для насосов и гидродвигателей. Желательность такого обобщения вытекает из свойства обратимости насосов и гидродвигателей. Это свойство заключается в том, что гидравлическая машина может работать как в качестве насоса (генератора гидравлической энергии), так и в качестве гидродвигателя. Однако, в отличие от электрических машин, обратимость гидравлических машин не является полной: для реализации обратимости необходимо внесение изменений в конструкцию машины, и кроме того, не каждый насос может работать в качестве гидродвигателя, и не каждый гидродвигатель может работать в режиме насоса.

Номинальная мощность, отдаваемая насосом в гидросистему или потребляемая гидродвигателем из гидросистемы, может быть определена по формуле:

N H = Q H ∗ P H <displaystyle N_=Q_*P_>

где Q H <displaystyle Q_> — номинальная подача насоса (для гидродвигателя — номинальный расход рабочей жидкости), P H <displaystyle P_> — номинальное давление на выходе из насоса (для гидродвигателя — номинальное давление рабочей жидкости на входе в гидродвигатель).

Термин «гидравлические машины» не следует путать с термином «гидрофицированные машины». Под последними обычно понимаются машины, привод рабочих органов которых выполнен на базе гидравлического привода.

Гидравлические машины являются необходимой частью гидропривода.

Гидравлическими машинами называются машины, которые сообщают протекающей через них жидкости механическую энергию (насос), либо получают от жидкости часть энергии и передают ее рабочему органу для полезного использования (гидродвигатель).

Насосы и гидромоторы применяют также в гидропередачах, назначением которых является передача механической энергии от двигателя к исполнительному органу, а также преобразование вида и скорости движения последнего посредством жидкости.

Гидропередачи по сравнению с механическими передачами (муфты, коробки скоростей, редукторы и т.д.) имеют следующие преимущества.
1. Плавность работы.
2. Возможность бесступенчатого регулирования скорости.
3. Меньшая зависимость момента на выходном валу от нагрузки, приложенной к исполнительному органу.
4. Возможность передачи больших мощностей.
5. Малые габаритные размеры.
6. Высокая надежность.

Эти преимущества привели к большому распространению гидропередач, несмотря на их несколько меньший, чем у механических передач КПД.

В современной технике применяется большое количество разновидностей машин. Наибольшее распространение для водоснабжения населения получили лопастные насосы. Рабочим органом лопастной машины является вращающееся рабочее колесо, снабженное лопастями. Лопастные насосы делятся на центробежные и осевые.

В центробежном лопастном насосе жидкость под действием центробежных сил перемещается через рабочее колесо от центра к периферии.

На рис. 7.1 изображена простейшая схема центробежного насоса. Проточная часть насоса состоит из трех основных элементов — подвода 1, рабочего колеса 2 и отвода 3. По подводу жидкость подается в рабочее колесо из подводящего трубопровода. Рабочее колесо 2 передает жидкости энергию от приводного двигателя. Рабочее колесо состоит из двух дисков а и б, между которыми находятся лопатки в, изогнутые в сторону, противоположную направлению вращения колеса. Жидкость движется через колесо из центральной его части к периферии. По отводу жидкость отводится от рабочего колеса к напорному патрубку или, в многоступенчатых насосах, к следующему колесу.

В осевом лопастном насосе жидкость перемещается в основном вдоль оси вращение рабочего колеса (рис. 7.2). Рабочее колесо осевого насоса похоже на винт корабля. Оно состоит из втулки 1, на которой закреплено несколько лопастей 2. Отводом насоса служит осевой направляющий аппарат 3, с помощью которого устраняется закрутка жидкости, и кинетическая энергия ее преобразуется в энергию давления. Осевые насосы применяют при больших подачах и малых давлениях.

Осевые насосы могут быть жестколопастными, в которых положение лопастей рабочего колеса не изменяется, и поворотно-лопастными, в которых положение рабочего колеса может регулироваться.

Поршневые насосы относятся к числу объемных насосов, в которых перемещение жидкости осуществляется путем ее вытеснения из неподвижных рабочих камер вытеснителями. Рабочей камерой объемного насоса называют ограниченное пространство, попеременно сообщающееся со входом и выходом насоса. Вытеснителем называется рабочий орган насоса, который совершает вытеснение жидкости из рабочих камер (плунжер, поршень, диафрагма).

Классифицируются поршневые насосы по следующим показателям:
1) по типу вытеснителей: плунжерные, поршневые и диафрагменные;
2) по характеру движения ведущего звена: возвратно-поступательное движение ведущего звена; вращательное движение ведущего звена (кривошипные и кулачковые насосы);
3) по числу циклов нагнетания и всасывания за один двойной ход: одностороннего действия; двухстороннего действия.
4) по количеству поршней: однопоршневые; двухпоршневые; многопоршневые.

Насос простого действия. Схема насоса простого действия изображена на рис. 7.3. Поршень 2 связан с кривошипно-шатунным механизмом через шток 3, в результате чего он совершает возвратно-поступательное движение в цилиндре 1. Поршень при ходе вправо создает разрежение в рабочей камере, вследствие чего всасывающий клапан 6 поднимается и жидкость из расходного резервуара 4 по всасывающему трубопроводу 5 поступает в рабочую камеру 7. При обратном ходе поршня (влево) всасывающий клапан закрывается, а нагнетательный клапан 8 открывается, и жидкость нагнетается в напорный трубопровод 9.

Так как каждому обороту двигателя соответствует два хода поршня, из которых лишь один соответствует нагнетанию, то теоретическая производительность в одну секунду будет

где F — площадь поршня, м²;
l — ход поршня, м;
n — число оборотов двигателя, об/мин.

Для повышения производительности поршневых насосов их часто выполняют сдвоенными, строенными и т.д. Поршни таких насосов приводятся в действие от одного коленчатого вала со смещением колен.

Действительная производительность насоса Q меньше теоретической, так как возникают утечки, обусловленные несвоевременным закрытием клапанов, неплотностями в клапанах и уплотнениях поршня и штока, а также неполнотой заполнения рабочей камеры.

Отношение действительной подачи Q к теоретической QT называется объемным КПД поршневого насоса:

Объемный КПД — основной экономический показатель, характеризующий работу насоса.

Насос двойного действия. Более равномерная и увеличенная подача жидкости, по сравнению с насосом простого действия, может быть достигнута насосом двойного действия (рис. 7.4), в котором каждому ходу поршня соответствуют одновременно процессы всасывания и нагнетания. Эти насосы выполняются горизонтальными и вертикальными, причем последние наиболее компактны. Теоретическая производительность насоса двойного действия будет

где f — площадь штока, м 2 .

Дифференциальный насос. В дифференциальном насосе (рис. 7.5) поршень 4 перемещается в гладко обработанном цилиндре 5. Уплотнением поршня служит сальник 3 (вариант I ) или малый зазор (вариант II ) со стенкой цилиндра. Насос имеет два клапана: всасывающий 7 и нагнетательный 6, а также вспомогательную камеру 1. Всасывание происходит за один ход поршня, а нагнетание за оба хода. Так, при ходе поршня влево из вспомогательной камеры в нагнетательный трубопровод 2 вытесняется объем жидкости, равный (F — f )l; при ходе поршня вправо из основной камеры вытесняется объем жидкости, равный fl. Таким образом, за оба хода поршня в нагнетательный трубопровод будет подан объем жидкости, равный

т.е. столько же, сколько подается насосом простого действия. Разница лишь в том, что это количество жидкости подается за оба хода поршня, следовательно, и подача происходит более равномерно.

Рабочий цикл поршневого насоса может быть графически описан на бумаге специальным прибором — индикатором. График изменения давления в цилиндре за один полный оборот кривошипа называется индикаторной диаграммой . На рис. 7.6 показана такая диаграмма насоса простого действия.

При движении поршня слева направо (см. рис. 7.3) (процесс всасывания) давление в цилиндре насоса резко падает до давления всасывания Pвс по линии аб. Из-за податливости стенок цилиндра и сжимаемости жидкости линия аб не вертикальна, а слегка наклонена и переходит затем в волнистую линию бв. Далее на всасывающей линии поддерживается постоянное давление и линия вг остается практически горизонтальной на протяжении всего хода всасывания. При обратном движении поршня (ход нагнетания) давление в цилиндре от Pвс поднимается до давления Pнагн по прямой гд, наклон которой влево от вертикали объясняется теми же самыми причинами, что и для линии аб. Начало сжатия жидкости сопровождается колебаниями давления в цилиндре (линия де). В дальнейшем давление Pнагн остается неизменным на протяжении всего хода нагнетания (линия еа). При повторном рабочем цикле этот график будет повторяться.

Неисправности, возникающие в гидравлической части поршневого насоса изменяют характер индикаторной диаграммы. Анализируя различные индикаторные диаграммы с теми или иными аномалиями, можно безошибочно сказать о неисправности насоса.

Баланс мощности в насосе наглядно можно представить в виде схемы, представленной на рис 7.7.

Мощность, которая подводится к валу насоса называется подведенной. Она равна произведению крутящего момента на валу на его угловую скорость

Мощность, которую мы получаем от насоса в виде потока жидкости под давлением называется полезной мощностью насоса (в дальнейшем просто мощностью)

Отношение мощности насоса к подведенной мощности называется общим КПД насоса

а разность NП — NH = Nпот называется потерями мощности в насосе. Потери мощности в насосе делятся на объемные, механические и гидравлические.

Потери мощности на внутренние утечки и неполное заполнение камер насоса

Объемный КПД насоса определится из соотношения

Для современных насосов объемный КПД находится в пределах 0,92…0,96. Значения КПД приведены в технических характеристиках насосов.

Механические КПД характеризует потери на терние в подвижных соединениях между деталями насоса. При относительном перемещении соприкасающихся поверхностей в зоне их контакта всегда возникает сила трения, которая направлена в сторону, противоположную движению. Эта сила расходуется на деформацию поверхностного слоя, пластическое оттеснение и на преодоление межмолекулярных связей соприкасающихся поверхностей.

Мощность, затраченная на преодоление сил трения, определяется

где Мтр — момент трения в насосе;
ω — угловая скорость вала насоса.

Механический КПД определяется из соотношения

Для современных насосов механический КПД также находится в пределах 0,92…0,96.

Гидравлический КПД характеризует потери на деформацию потока рабочей жидкости в напорной камере и на трение жидкости о стенки сосуда. Эти потери примерно на порядок ниже механических потерь на трение и часто в инженерных расчетах не учитываются или объединяются с механическими потерями на трение. В этом случае объединенный КПД называется гидромеханическим.

Мощность, затраченная на гидравлические потери, определится

где PК — давление в напорной камере насоса;
PН — давление в напорной гидролинии на выходе из насоса.

Гидравлический КПД определяется из соотношения

Общий КПД насоса равен произведению КПД объемного, гидравлического и механического

Таким образом, баланс мощности насоса дает представление о потерях, возникающих в насосе, общем КПД и всех его составляющих.

Кроме насосов и гидромоторов существуют и другие разнообразные по конструкции и назначению гидроэлементы. Одни управляют потоком рабочей жидкости, другие служат для обеспечения безотказной работы гидросистем и т.д. Совокупность этих устройств называется гидроприводом и требует отдельного изучения. Все гидроэлементы имеют свое условное обозначение, из которых составляются гидросхемы по аналогии с электрическими схемами.

Ниже приводятся условные обозначения основных гидроэлементов.

На рис. 7.8 изображен составленный из условных обозначений пример гидравлической схемы привода поворота стрелы челюстного погрузчика.

Схема состоит из бака, нерегулируемого гидромотора, трехпозиционного гидрораспределителя, двух регулируемых дросселей с параллельно подключенными к ним обратными клапанами, двух гидроцилиндров, фильтра и предохранительного клапана.

Принцип работы гидропривода заключается в следующем. Из бака рабочая жидкость (масло) забирается насосом и подается к гидрораспределителю. В нейтральном положении золотника гидрораспределителя при работающем насосе на участке трубопровода между насосом и распределителем начинает увеличиваться давление, при этом срабатывает предохранительный клапан и жидкость сливается обратно в бак. При смене позиции золотника (нижняя позиция на схеме) открываются проходные сечения в гидрораспределителе, и жидкость начинает поступать в полости нагнетания гидродвигателей (поршневые полости гидроцилиндров). Из штоковой полости гидроцилиндров масло по гидролинии слива проходит через регулируемые дроссели, гидрораспределитель и, очищаясь фильтром, попадает на слив в бак.

Скорость поступательного движения штоков гидроцилиндров регулируется дросселями. Реверсирование движения штоков осуществляется путем переключения позиций гидрораспределителя. При обратном движении штоков без нагрузки их скорость не регулируется и зависит от расхода рабочей жидкости в штоковые полости. При аварийной остановке штоков (например, непреодолимое усилие) давление в системе возрастает, вызывая тем самым открытие предохранительного клапана и сброс рабочей жидкости в бак.

Оцените статью
Topsamoe.ru
Добавить комментарий