Построение градуировочной зависимости прочности бетона

В соответствии с ГОСТ 17624 «Бетоны. Ультразвуковой метод определения прочности», контроль монолитных конструкций ультразвуковым методом производится только способом сквозного прозвучивания. Опыт работы лаборатории железобетонных конструкций и контроля качества ГУП НИИЖБ показал возможность применения для неразрушающего контроля прочности бетона монолитных конструкций способа поверхностного прозвучивания.

Настоящие рекомендации разработаны в развитие ГОСТ 17624 и содержат основные правила контроля прочности бетона на сжатие монолитных конструкций способом поверхностного прозвучивания.

1. Общие положения

1.1. Способ поверхностного прозвучивания может использования для контроля разопалубочной прочности бетона и прочности в установленные проектом сроки при возведении монолитных конструкции, а также при инженерных обследованиях эксплуатируемых и реконструируемых монолитных конструкций.

1.2. Определение прочности бетона выполняют по экспериментально установленным градуировочным зависимостям «скорость распространения ультразвука при поверхностном прозвучивании — прочность бетона» или «время распространения ультразвука при поверхностном прозвучивании — прочность бетона».

1.3. Способ поверхностного прозвучивания может использоваться для контроля прочности тяжелого и легкого бетона классов В7,5 — В50 при условии удовлетворения градуировочной зависимости требованиям п.2.9.

1.4. Ультразвуковые измерения производятся с помощью приборов, отвечающих требованиям ГОСТ 17624 и обеспечивающих измерение скорости (времени) распространения ультразвука на базе 120 мм и более. Рекомендуется использовать приборы с преобразователем, обеспечивающим сухой способ акустического контакта.

2. Подготовка к испытаниям

2.1. Для определения прочности бетона в конструкциях предварительно устанавливается градуировочная зависимость.

2.2. Градуировочная зависимость устанавливается на основании данных параллельных испытаний одних и тех же участков конструкций ультразвуковым методом и методом отрыва со скалыванием по ГОСТ 22690 или по данным ультразвуковых испытаний участков конструкций и испытаний образцов, вырезанных из тех же участков конструкций, в соответствии с ГОСТ 28570-90. Возможно также построение градуировочной зависимости по данным ультразвуковых испытаний образцов-кубов и последующих их испытаний на прессе. Кубы должны находиться в тех же условиях, в которых находятся конструкции и ультразвуковые испытания кубов должны производиться в тех же условиях, в которых будут испытываться конструкции.

2.3. Построение градуировочных зависимостей по данным испытаний образцов ведется в соответствии с ГОСТ 17624.

2.4. При построении градуировочной зависимости по данным параллельных испытаний ультразвуковым методом и методом отрыва со скалыванием, или испытания образцов, вырезанных из конструкций, на подлежащих испытанию конструкциях или их зонах предварительно проводят ультразвуковые измерения и определяют участки с минимальной и максимальной скоростью (временем) распространения ультразвука. Затем выбирают не менее 12 участков, включая участки, в которых скорость (время) распространения ультразвука максимальна, минимальна и имеет промежуточные значения. После испытания ультразвуковым методом эти участки испытывают методом отрыва со скалыванием или отбирают из них образцы для испытания под прессом.

2.5. Возраст бетона в отдельных участках не должен отличаться более чем на 25% от среднего возраста бетона подлежащих контролю зоны конструкции, конструкции или групп конструкций. Исключение составляет построение градуировочной зависимости для определения прочности бетона при проведении инженерных обследований, когда различие в возрасте не регламентируется.

2.6. На каждом участке магнитным прибором ("Поиск" или др.) определяется положение арматуры, а затем ультразвуковым прибором проводят не менее 2-х измерений скорости (времени) распространения ультразвука. Измерения проводятся в двух взаимно перпендикулярных направлениях. Прозвучивание производится под углом примерно 45° к направлению арматуры, параллельно или перпендикулярно ей. При прозвучивании в направлении, параллельном арматуре, линия прозвучивания располагается между арматурными стержнями (рис. 1).


Рис.1

1 — положение прибора при испытании, 2 — расположение арматуры

2.7. Отклонение отдельных результатов измерений скорости (времени) распространения ультразвука на каждом участке от среднего арифметического значения результатов измерений для данного участка, не должно превышать 2 %. Результаты измерений, не удовлетворяющие этому условию, не учитываются при вычислении среднего арифметического значения скорости (времени) распространения ультразвука для данного участка.

2.8. Градуировочную зависимость, устанавливают, принимая за единичные значения среднее значение скорости (времени) распространения ультразвука в участке и прочность бетона участка, определенную методом отрыва со скалыванием или испытанием отобранных образцов.

2.9. Установление, проверку градуировочной зависимости и оценку ее погрешности проводят в соответствии с методикой, приведенной в приложении 4 к ГОСТ 17624.

Пример установления градуировочной зависимости и оценки ее погрешности приведены в приложении 5 ГОСТ 17624.

Допускается проводить построение линейной градуировочной зависимости вида R= а + bV или R = а + bТ (где R — прочность бетона, V и Т — соответственно скорость или время распространения ультразвука) без отбраковки единичных результатов, пользуясь имеющимися программами для ЭВМ, например программой ЕХСЕL.

Коэффициент корреляции градуировочной зависимости должен быть не менее 0,7, а значение относительного среднего квадратического отклонения Sт.н.м. R = Ry * Rс ,

  • Riпрочность бетона в участке, определенная методом отрыва со скалыванием, или прочность бетона образца;
  • Ry – то же, по зависимости п.3.2;
  • n – число участков испытаний, или число образцов, принимаемое не минее пяти.

При этом частные значения Ri / Ry должны находиться в пределах 0,7 ¸ 1,3.

4. Проведение испытаний и определение прочности бетона в конструкциях

4.1. Число и расположение контролируемых участков на конструкциях должны устанавливаться с учетом требований ГОСТ 18105-86, или устанавливаться программой работ, согласованной с проектной организацией — автором испытываемой конструкции или разработчиками настоящих рекомендаций.

При этом количество и расположение участков должно устанавливаться с учетом:

  • задач контроля (установление фактической прочности бетона, разопалубочной прочности);
  • особенностей работы конструкций (изгиб, сжатие и т.п.);
  • условий проведения испытаний;
  • армирования конструкций;
  • наличия или отсутствия контрольных кубов.

4.2. На каждом контролируемом участке проводят не менее двух измерений времени (скорости) распространения ультразвука. Отклонение отдельных измерений от среднего арифметического значения должно отвечать требованиям п.2.7. Определяют прочность бетона по среднему значению полученных результатов измерений скорости (времени) распространения ультразвука.

При размещении участков измерений следует учитывать требования п.2.6.

4.3. При контроле прочности бетона конструкций в возрасте до 56 суток включительно возраст конструкций при испытании не должен отличаться от среднего возраста образцов или участков конструкций, использованных для построения градуировочных зависимостей, более чем на 25%.

При контроле прочности бетона большего возраста это различие не должно превышать диапазона возраста участков конструкций или образцов, использованных для построения градуировочных зависимостей.

Для определения прочности бетона эксплуатируемых конструкций должна использоваться градуировочная зависимость, построенная непосредственно перед обследованием.

4.4. Прочность бетона контролируемого участка конструкции определяют по градуировочной зависимости, установленной в соответствии с разделом 2, при условии, что измеренное значение скорости (времени) ультразвука находится в пределах между наименьшим и наибольшим значениями скорости (времени) ультразвука в образцах или участках конструкций, испытанных при построении градуировочной зависимости.

Полученные значения прочности бетона принимают за среднюю прочность бетона участка конструкции Ri.

4.5. Для определения класса бетона по данным испытаний следует руководствоваться требованиями ГОСТ 18105-86, СНиП 2.03.01-84*, а также «Рекомендаций по статистической оценке прочности бетона при испытании неразрушающими методами» (МДС 62-1.2001 г.) ГУПНИИЖБ.

Популярные товары

Моноблочный ультразвуковой прибор ПУЛЬСАР-2М для контроля прочности и однородности бетона (ГОСТ 17624, Рекомендации НИИЖБ МДС 62-2.01), кирпича (ГОСТ 17624) и д.

Наиболее функционально насыщенная версия ультразвукового прибора. Содержит полностью цифровой тракт с функцией визуализации принимаемого сигнала. Прибор незамен.

Ультразвуковой прибор ПУЛЬСАР-2.2 ДБС используют для ультразвуковой дефектоскопии буронабивных свай с помощью преобразователей, погруженных в контрольные вертик.

Определение прочности бетона при обследовании зданий и сооружений

В предлагаемой статье рассмотрены основные методы неразрушающего контроля прочности бетона, применяемые при обследовании конструкций зданий и сооружений. Приведены результаты экспериментов по сопоставлению данных, получаемых неразрушающими методами контроля и испытанием образцов. Показывается преимущество метода отрыва со скалыванием перед другими методами контроля прочности. Описываются мероприятия, без выполнения которых применение косвенных неразрушающих методов контроля недопустимо.

Прочность бетона на сжатие является одним из наиболее часто контролируемых параметров при строительстве и обследовании железобетонных конструкций. Имеется большое число методов контроля, применяемых на практике. Более достоверным, сточки зрения авторов, является определение прочности не по контрольным образцам (ГОСТ 10180-2012), изготовляемым из бетонной смеси, а по испытанию бетона конструкции после набора им проектной прочности. Метод испытания контрольных образцов позволяет оценить качество бетонной смеси, но не прочность бетона конструкции. Это вызвано тем, что невозможно обеспечить идентичные условия набора прочности (вибрирование, прогрев и др.) для бетона в конструкции и бетонных кубиков образцов.

Методы контроля по классификации ГОСТ 18105-2010 разделены на три группы:

  1. Разрушающие;
  2. Прямые неразрушающие;
  3. Косвенные неразрушающие.

К методам первой группы относится упомянутый метод контрольных образцов, а также метод определения прочности путем испытания образцов, отобранных из конструкций. Последний является базовым и считается наиболее точным и достоверным. Однако при обследовании к нему прибегают довольно редко. Основными причинами этого являются существенное нарушение целостности конструкций и высокая стоимость исследований.

Таблица 1. Характеристики методов неразрушающего контроля прочности бетона.

Наименование метода Диапазон применения*, МПа Погрешность измерения**
1 Пластической деформации 5 . 50 ± 30 . 40%
2 Упругого отскока 5 . 50 ± 50%
3 Ударного импульса 10 . 70 ± 50%
4 Отрыва 5 . 60 нет данных
5 Отрыва со скалыванием 5 . 100 нет данных
6 Скалывания ребра 10 . 70 нет данных
7 Ультразвуковой 10 . 40 ± 30 . 50%
* по требованием ГОСТ 17624 и ГОСТ 22690;
** по данным источника [3] без построения частной градуировочной зависимости

В основном применяются методы неразрушающего контроля. При этом большая часть работ выполняется косвенными методами. Среди них наиболее распространенными на сегодняшний день являются ультразвуковой метод по ГОСТ 17624-2012, методы ударного импульса и упругого отскока по ГОСТ 22690. Однако при использовании указанных методов редко соблюдаются требования стандартов по построению частных градуировочных зависимостей. Некоторые исполнители не знают этих требований. Другие знают, но не понимают, насколько велика ошибка результатов измерений при использовании зависимостей, заложенных или прилагаемых к прибору, вместо зависимости, построенной на конкретном исследуемом бетоне. Есть «специалисты», которые знают об указанных требованиях норм,но пренебрегают ими, ориентируясь на финансовую выгоду и неосведомленность заказчика в данном вопросе.

Про факторы, влияющие на ошибку измерения прочности без построения частных градуировочных зависимостей, написано много работ, в том числе приведенные в списке литературы [1,2]. В табл. 1 представлены данные по максимальной погрешности измерений различными методами, приведенные в монографии по неразрушающему контролю бетона [3].

В дополнение к обозначенной проблеме использования несоответствующих («ложных») зависимостей обозначим еще одну, возникающую при обследовании. Согласно требованиям СП 13-102-2003 обеспечение выборки измерений (параллельных испытаний бетона косвенным и прямым методом) на более чем 30 участках является необходимым, но не достаточным для построения и использования градуировочной зависимости. Необходимо, чтобы полученная парным корреляционнорегрессионным анализом зависимость имела высокий коэффициент корреляции (более 0,7) и низкое СКО (менее 15% от средней прочности). Чтобы данное условие выполнялось, точность измерений обоих контролируемых параметров (например, скорость ультразвуковых волн и прочность бетона) должна быть достаточно высокой, а прочность бетона, по которому строится зависимость, должна изменяться в широком диапазоне.

При обследовании конструкций указанные условия выполняются редко. Во-первых, даже базовый метод испытания образцов нередко сопровождается высокой погрешностью. Во-вторых, за счет неоднородности бетона и других факторов [4] прочность в поверхностном слое (исследуемая косвенным методом) может не соответствовать прочности того же участка на некоторой глубине (при использовании прямых методов). И наконец, при нормальном качестве бетонирования и соответствии класса бетона проектному в пределах одного объекта редко можно встретить однотипные конструкции с прочностью, изменяющейся в широком диапазоне (например, от В20 до В60). Таким образом, зависимость приходится строить по выборке измерений с малым изменением исследуемого параметра.

Рис. 1 . Зависимость между прочностью бетона и скоростью ультразвуковых волн

В качестве наглядного примера вышеуказанной проблемы рассмотрим градуировочную зависимость, представленную на рис.1. Линейная регрессионная зависимость построена по результатам ультразвуковых измерений и испытаний на прессе образцов бетона. Несмотря на большой разброс результатов измерений, зависимость имеет коэффициент корреляции 0,72, что допустимо по требованиям СП 13-102- 2003. При аппроксимации функциями, отличными от линейной (степенной, логарифмической и пр.) коэффициент корреляции был менее указанного. Если бы диапазон исследуемой прочности бетона был меньше, например от 30 до 40 МПа (область, выделенная красным цветом), то совокупность результатов измерений превратилась бы в «облако», представленное в правой части рис. 1. Данное облако точек характеризуется отсутствием связи между измеряемым и искомым параметрами, что подтверждается максимальным коэффициентом корреляции 0,36. Иными словами, градуировочную зависимость здесь не построить.

Также необходимо отметить, что на рядовых объектах количество участков измерения прочности для построения градуировочной зависимости сопоставимо с общим количеством измеряемых участков. В данном случае прочность бетона может быть определена по результатам только прямых измерений, а в градуировочной зависимости и использовании косвенных методов контроля уже не будет смысла.

Таким образом, без нарушения требований действующих норм для определения прочности бетона при обследовании в любом случае необходимо в том или ином объеме использовать прямые неразрушающие либо разрушающие методы контроля [2]. Учитывая это, а также обозначенные выше проблемы, далее более подробно рассмотрим прямые методы контроля.

К данной группе по ГОСТ 22690-2015 относится три метода:

  1. Метод отрыва;
  2. Метод отрыва со скалыванием;
  3. Метод скалывания ребра.

Контроль прочности бетона методом отрыва

Метод отрыва основан на измерении максимального усилия, необходимого для отрыва фрагмента бетонной конструкции. Отрывающая нагрузка прилагается к ровной поверхности испытываемой конструкции за счет приклеивания стального диска (рис. 2), имеющего тягу для соединения с прибором. Для приклеивания могут использоваться различные клеи на эпоксидной основе. В ГОСТ 22690 рекомендуются клеи ЭД20 и ЭД16 с цементным наполнителем. На сегодняшний день могут применяться современные двухкомпонентные клеи,производство которых хорошо налажено (POXIPOL, «Контакт», «Момент» и др.). В отечественной литературе по испытанию бетона [5, 6] методика испытания предполагает приклеивание диска к участку испытания без дополнительных мероприятий по ограничению зоны отрыва. В таких условиях площадь отрыва является непостоянной и должна определяться после каждого испытания. В зарубежной практике перед испытанием участок отрыва ограничивается бороздой, создаваемой кольцевыми сверлами (коронками). В данном случае площадь отрыва постоянна и известна, что увеличивает точность измерений.

Рис. 2. Прибор для метода отрыва с диском для приклеивания к бетону

После отрыва фрагмента и определения усилия определяется прочность бетона на растяжение (Rbt),по которой с помощью пересчета по эмпирической зависимости может быть определена прочность на сжатие (R). Для перевода можно воспользоваться выражением, указанным в пособии [7]:

Для метода отрыва могут применяться различные приборы, используемые и для метода отрыва со скалыванием, такие как ПОС-50МГ4, ПИВ, DYNA (рис. 2), а также старые аналоги: ГПНВ-5, ГПНС-5. Для проведения испытания необходимо наличие захватного устройства, соответствующего тяге, расположенной на диске.

В России метод отрыва не нашел широкого распространения. Об этом свидетельствует и отсутствие серийно выпускаемых приборов, приспособленных для крепления к дискам, а также самих дисков. В нормативных документах отсутствует зависимость для перехода от усилия вырыва к прочности на сжатие. В новом ГОСТ 18105-2010, а также предшествующем ГОСТ Р 53231-2008 метод отрыва не включен в перечень прямых методов неразрушающего контроля и вообще не упоминается. Причиной этому, по всей видимости, является ограниченный температурный диапазон применения метода, что связано с продолжительностью твердения и (или) невозможностью использования эпоксидных клеев при низкой температуре воздуха. Большая часть России расположена в более холодных климатических зонах, чем страны Европы, поэтому данный метод, широко применяемый в европейских странах, в нашей стране не используется. Другим отрицательным фактором является необходимость сверления борозды, что дополнительно снижает производительность контроля.

Контроль прочности бетона методом отрыва со скалыванием

Данный метод имеет много общего с описанным выше методом отрыва. Основным отличием является способ крепления к бетону. Для приложения отрывающего усилия используются лепестковые анкеры различных размеров. При обследовании конструкций анкеры закладываются в шпур, пробуренный на участке измерения. Так же, как и при методе отрыва, измеряется разрушающее усилие (Р). Переход к прочности бетона на сжатие осуществляется по указанной в ГОСТ 22690 зависимости:

где m1— коэффициент, учитывающий максимальный размер крупного заполнителя, m2 — коэффициент перехода к прочности на сжатие, зависящий от вида бетона и условий твердения.

В нашей стране данный метод нашел, пожалуй, самое широкое распространение благодаря своей универсальности (табл.1), относительной простоте крепления к бетону, возможности испытания практически на любом участке конструкции. Основными ограничениями для его применения являются густое армирование бетона и толщина испытываемой конструкции, которая должна быть больше, чем удвоенная длина анкера. Для выполнения испытаний могут использоваться приборы, указанные выше.

Помимо более простого и быстрого крепления к бетону конструкции по сравнению с методом отрыва, не требуется обязательное наличие ровной поверхности. Главным условием является необходимость того, чтобы кривизна поверхности была достаточной для установки прибора на тягу анкера. В качестве примера на рис. 3 представлен прибор ПОС-МГ4, установленный на деструктированную поверхность устоя гидротехнического сооружения.

Контроль прочности бетона методом скалывания ребра

Последним прямым методом неразрушающего контроля является модификация метода отрыва — метод скалывания ребра. Основное отличие заключается в том, что прочность бетона определяют по усилию (Р), необходимому для скалывания участка конструкции, расположенному на внешнем ребре. В нашей стране долгое время выпускались приборы типа ГПНС-4 и ПОС-МГ4 Скол, конструкция которых предполагала обязательное наличие двух рядом расположенных внешних углов конструкции. Захваты прибора подобно струбцине крепились на испытываемый элемент, после чего через захватывающее устройство прилагалось усилие к одному из ребер конструкции. Таким образом, испытание можно было проводить только на линейных элементах (колонны, ригели) или в проемах на краях плоских элементов (стены, перекрытия). Несколько лет назад была разработана конструкция прибора, которая позволяет устанавливать его на испытываемый элемент с наличием только одного внешнего ребра. Закрепление осуществляется к одной из поверхностей испытываемого элемента при помощи анкера с дюбелем. Данное изобретение несколько расширило диапазон применения прибора, но одновременно с этим уничтожило основное преимущество метода скалывания, которое заключалось в отсутствии необходимости сверления и потребности в источнике электроэнергии.

Прочность бетона на сжатие при использовании метода скалывания ребра определяется по нормированной зависимости:

где m — коэффициент, учитывающий крупность заполнителя.

Таблица 2. Сравнительные характеристики прямых методов неразрушающего контроля

Преимущества Метод
Отрыв Отрыв со скалыванием Скалывание ребра
Определение прочности бетонов классом более В60 +
Возможность установки на неровную поверхность
бетона (неровности более 5 мм)
+
Возможность установки на плоский участок
конструкции (без наличия ребра)
+ +
Отсутствие потребности в источнике
электроснабжения для установки
+* +
Быстрое время установки + +
Работа при низких температурах воздуха + +
Наличие в современных стандартах + +
* без свердения борозды, ограничивающей участок отрыва

Для наглядности сравнения характеристики прямых методов контроля представлены в табл. 2.

Поданным, приведенным в таблице, видно, что наибольшим числом преимуществ характеризуется метод отрыва со скалыванием.

Однако, несмотря на возможность применения данного метода по указаниям норм без построения частной градуировочной зависимости, у многих специалистов возникает вопрос о точности получаемых результатов и соответствии их прочности бетона, определяемой методом испытания образцов. Для исследования этого вопроса, а также сопоставления результатов измерений, полученных прямым методом, с результатами измерений косвенными методами проведен эксперимент, описанный далее.

Результаты сравнения методов

В лаборатории «Обследование и испытание зданий и сооружений» ФГБОУ ВПО «СПбГПУ» были проведены исследования при использовании различных методов контроля. В качестве объекта исследования использован фрагмент бетонной стены, выпиленный алмазным инструментом. Габариты бетонного образца — 2,0 х 1,0 х 0,3 м. Армирование выполнено двумя сетками арматуры диаметром 16 мм, расположенной с шагом 100 мм с величиной защитного слоя 15-60 мм. В исследуемом образце применен тяжелый бетон на заполнителе из гранитного щебня фракции 20-40.

Для определения прочности бетона использован базовый разрушающий метод контроля. Из образца с помощью установки алмазного сверления выбурены 11 кернов различной длины диаметром 80 мм. Из кернов изготовлены 29 образцов — цилиндров, удовлетворяющих по своим размерам требованиям ГОСТ 28570-90. По результатам испытания образцов на сжатие выявлено, что среднее значение прочности бетона составило 49,0 МПа. Распределение значений прочности подчиняется нормальному закону (рис. 4). При этом прочность исследуемого бетона имеет высокую неоднородность с коэффициентом вариации 15,6% и СКО равным 7,6 МПа.

Для неразрушающего контроля применены методы отрыва, отрыва со скалыванием, упругого отскока и ударного импульса. Метод скалывания ребра не применялся по причине близкого расположения арматуры к ребрам образца и невозможности выполнения испытаний. Ультразвуковой метод не использован, так как прочность бетона выше допустимого диапазона для применения данного метода (табл. 1). Выполнение измерений всеми методами производилось на грани образца, срезанной алмазным инструментом, что обеспечивало идеальные условия с точки зрения ровности поверхности. Для определения прочности косвенными методами контроля использовались градуировочные зависимости, имеющиеся в паспортах приборов, или заложенные в них.

Таблица 3. Результаты измерения прочности различными методами


п/п
Метод контроля
(прибор)
Количество
измерений, n
Среднее значение
прочности, Rm, МПа
Коэффициент
вариации, V, %
1 Испытание на сжатие в прессе
(ПГМ-1000МГ4)
29 49,0 15,6
2 Метод отыва со скалыванием
(ПОС-50МГ4)
6 51,1 4,8
3 Метод отрыва (DYNA) 3 49,5
4 Метод ударного импульса
(Silver Schmidt)
30 68,4 7,8
5 Метод ударного импульса
(ИПС-МГ4.04)
100 78,2 5,2
6 Метод упругого отскока
(Beton Condtrol)
30 67,8 7,27

На рис. 5. представлен процесс измерения методом отрыва. Результаты измерений всеми методами представлены в табл. 3.

Поданным, представленным в таблице, можно сделать следующие выводы:

• среднее значение прочности, полученной испытанием на сжатие и прямыми методами неразрушающего контроля, различается не более чем на 5%;

• по результатам шести испытаний методом отрыва со скалыванием разброс прочности характеризуется низким значением коэффициента вариации 4,8%;

• результаты, полученные всеми косвенными методами контроля, завышают прочность на 40-60%. Одним из факторов, приведших к данному завышению, является карбонизация бетона, глубина которой на исследуемой поверхности образца составила 7 мм.

Выводы

1. Мнимая простота и высокая производительность косвенных методов неразрушающего контроля теряются при выполнении требований построения градуировочной зависимости и учете (устранении) влияния факторов, искажающих результат. Без выполнения этих условий данные методы при обследовании конструкций можно применять только для качественной оценки прочности по принципу «больше — меньше».

2. Результаты измерений прочности базовым методом разрушающего контроля путем сжатия отбираемых образцов также могут сопровождаться большим разбросом, вызванным как неоднородностью бетона, так и другими факторами.

3. Учитывая повышенную трудоемкость разрушающего метода и подтвержденную достоверность результатов, получаемых прямыми методами неразрушающего контроля, при обследовании рекомендуется применять последние.

4. Среди прямых методов неразрушающего контроля оптимальным по большинству параметров является метод отрыва со скалыванием.

А. В. Улыбин, к. т. н.; С. Д. Федотов, Д. С. Тарасова (ПНИПКУ «Венчур», Санкт-Петербург)

1. Штенгель В. Г. О корректном применении НК в обследованиях железобетонных конструкций длительно эксплуатирующихся сооружений // В мире НК. 2009. №3. С. 56-62.

2. Улыбин А. В. О выборе методов контроля прочности бетона построенных сооружений // Инженерно-строительный журнал. 2011. №4 (22). С. 10-15

3. Джонс Р., Фэкэоару И. Неразрушающие методы испытаний бетонов. Пер.срумынск. М., Стройиздат, 1974. 292 с.

4. Штенгель В. Г. Общие проблемы технического обследования неметаллических строительных конструкций эксплуатируемых зданий и сооружений // Инженерно-строительный журнал. 2010. №7(17). С. 4-9.

5. Пособие по обследованию строительных конструкций зданий. М.: ЦНИИПромзданий, 1997.179 с.

6. Лужин О. В. Обследование и испытание зданий и сооружений/О. В.Лужин и др. М.: Стройиздат, 1987. 264 с.

7. Строительные конструкции: учебное пособие /Р. Л. Маилян, Д. Р. Маилян, Ю. А. Веселов. Изд. 4-е. Ростов н/Д : Феникс, 2010. 875 с.

Настоящий стандарт распространяется на конструкционные тяжелые и легкие бетоны монолитных и сборных бетонных и железобетонных изделий, конструкций и сооружений (далее — конструкций) и устанавливает ультразвуковой импульсный метод (далее — ультразвуковой метод) определения прочности бетона классов В7,5-В40. При разработке стандарта использованы материалы ГОСТ 17624.

В настоящем стандарте использованы ссылки на следующие нормативные документы:

СП 13-102-2003 Правила обследования несущих строительных конструкций зданий и сооружений

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 17624-87 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 18105-86 Бетоны. Правила контроля прочности

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ПМГ 06-2001 Порядок взаимного признания результатов испытаний утвержденного типа, поверки и метрологической аттестации средств измерений.

Ультразвуковой метод определения прочности бетона — неразрушающий метод определения прочности, основанный на связи прочности бетона с показанием прибора (косвенной характеристикой прочности).

Косвенная характеристика прочности (косвенный показатель) — скорость или время распространения ультразвука, или показатель прибора в условных единицах прочности.

Градуировочная зависимость — графическая или аналитическая зависимость, связывающая косвенный показатель с прочностью бетона.

База прозвучивания — расстояние между центрами рабочих поверхностей ультразвуковых преобразователей (излучателя и приемника), установленных на одну и ту же поверхность конструкции при поверхностном прозвучивании, и между центрами рабочих поверхностей преобразователей при сквозном прозвучивании.

Коэффициент совпадения — коэффициент, используемый для корректировки ранее построенной или универсальной градуировочной зависимости.

4.1 Ультразвуковой метод применяют для определения прочности бетона в установленном проектной документацией промежуточном (не менее 7 сут) и проектном (как правило, 28-суточном) возрасте, а также при экспертном контроле.

4.2 Ультразвуковой метод основан на связи между скоростью распространения ультразвуковых колебаний в бетоне и его прочностью.

4.3 Ультразвуковые измерения в бетоне проводят способами сквозного или поверхностного прозвучивания в соответствии с приложением А .

4.4 Прочность бетона в конструкциях определяют по экспериментально установленным градуировочным зависимостям.

4.5 Прочность бетона определяют на участках конструкций, не имеющих видимых повреждений (отслоения защитного слоя, трещин, каверн и др.).

4.6 Ультразвуковые испытания проводят при положительной температуре бетона. Допускается проведение ультразвуковых испытаний конструкций при отрицательной температуре бетона не ниже минус 10°С при условии, что построение градуировочной зависимости осуществлено в соответствии с п. 6.11 .

5.1 Ультразвуковые измерения проводят приборами, предназначенными для измерения времени распространения ультразвука в бетоне и аттестованными в установленном порядке по ПМГ 06-2001.

5.2 Предел допускаемой абсолютной погрешности измерения времени распространения ультразвука на стандартных образцах, входящих в комплект прибора, не должен превышать значения

где t — время распространения ультразвука, мкс.

5.3 При поверхностном прозвучивании размер базы должен быть не менее 120 мм и не более 200 мм .

5.4 Между бетоном и рабочими поверхностями ультразвуковых преобразователей должен быть обеспечен надежный акустический контакт за счет применения переходных устройств или прокладок, обеспечивающих сухой способ акустического контакта, или при преобразователях и с плоской рабочей поверхностью, за счет применения вязких контактных материалов (пластилин, технический вазелин и др.).

Способ контакта должен быть одинаковым при контроле бетона в конструкции и установлении градуировочной зависимости.

5.5 Применение ультразвуковых приборов, градуированных в единицах прочности бетона для непосредственного определения прочности бетона, не допускается.

Показания этих приборов следует рассматривать как косвенный показатель прочности бетона и использовать при контроле так же, как и скорость или время распространения ультразвука, или же корректировать эти показания в соответствии с п. 6.25 .

6.1 Подготовка испытания включает проверку используемых приборов в соответствии с инструкциями по эксплуатации и установку градуировочных зависимостей в соответствии с выбранным способом прозвучивания.

6.2 Градуировочная зависимость должна связывать косвенный показатель с прочностью бетона.

6.4 Для контроля прочности бетона сборных и монолитных конструкций при сквозном прозвучивании градуировочную зависимость устанавливают по результатам ультразвуковых измерений в бетонных образцах-кубах и механических испытаний тех же образцов.

6.5 Градуировочные зависимости строят для каждого вида нормируемой прочности бетона, указанного в п.4.1. При этом диапазон значений прочности бетона не должен превышать значений, соответствующих трем соседним классам. В отдельных случаях, согласованных с разработчиками стандарта, допускается диапазон, соответствующий четырем соседним классам.

6.6 При построении градуировочной зависимости по данным параллельных испытаний ультразвуковым методом и методом отрыва со скалыванием или испытаний образцов, вырезанных из конструкций, на подлежащих испытанию конструкциях или их зонах предварительно проводят ультразвуковые измерения и определяют участки с минимальным и максимальным косвенными показателями. Затем выбирают не менее 12 участков, включая участки, в которых величина косвенного показателя максимальна, минимальна и имеет промежуточные значения.

После испытания ультразвуковым методом эти участки испытывают методом отрыва со скалыванием или отбирают из них образцы для испытания под прессом.

6.7 Возраст бетона в отдельных участках не должен отличаться более чем на 25 % среднего возраста бетона подлежащей контролю зоны конструкции или группы конструкций. Исключение составляет построение градуировочной зависимости конструкций, возраст которых превышает два месяца. В этом случае различие в возрасте отдельных участков не регламентируется.

6.8 На каждом участке магнитным прибором (ИЗС-10Н, ИПА-МГ4.01, «Поиск» или др.) определяют положение арматуры, а затем ультразвуковым прибором проводят не менее двух измерений косвенного показателя. Измерения проводят в двух взаимно перпендикулярных направлениях. Прозвучивание производят под углом примерно 45° к направлению арматуры, параллельно или перпендикулярно ей. При прозвучивании в направлении, параллельном арматуре, линию прозвучивания располагают между арматурными стержнями (рис. 1).

1 — положение прибора при испытании; 2 — расположение арматуры

Отклонение отдельных результатов измерений скорости (времени) распространения ультразвука на каждом участке от среднего арифметического значения результатов измерений для данного участка не должно превышать 2 %. Результаты измерений, не удовлетворяющие этому условию, не учитываются при вычислении среднего арифметического значения скорости (времени) распространения ультразвука для данного участка.

6.10 При необходимости проведения испытаний монолитных конструкций непосредственно после тепловой обработки при температуре поверхности бетона выше 40 °С, ультразвуковые испытания на конструкции проводят при этой температуре, а испытание бетона методом отрыва со скалыванием или испытания образцов — после остывания.

Конструкции, подвергавшиеся тепловой обработке, могут быть испытаны в возрасте не менее 15 сут при условии, что при замораживании они имели не менее 70 % проектной прочности.

6.12 При построении градуировочной зависимости по результатам ультразвуковых измерений в бетонных образцах-кубах и механических испытаний тех же образцов механические испытания образца проводят по ГОСТ 10180 непосредственно после ультразвуковых измерений.

При необходимости проведения ультразвуковых испытаний бетона конструкций непосредственно после термообработки (горячего) для определения отпускной прочности бетона этих конструкций после их остывания допускается устанавливать градуировочную зависимость по результатам ультразвуковых измерений горячих образцов и механических испытаний тех же образцов после их остывания.

6.13 Для построения градуировочной зависимости используют не менее 15 серий образцов-кубов.

Образцы изготавливают в соответствии с требованиями ГОСТ 10180 в разные смены в течение не менее трех суток из бетона того же номинального состава, по той же технологии, при том же режиме твердения, что и конструкции, подлежащие контролю.

В случае применения на производстве способов и режимов уплотнения бетона конструкций, приводящих к изменению его состава за счет отжатия воды затворения, способ приготовления образцов необходимо указывать в нормативно-технической или проектной документации на эти конструкции.

Допускается изготовление до 40 % общего числа образцов из бетонной смеси, состав которой отличается от номинального по цементно-водному отношению не более 0,4.

6.14 При установлении градуировочной зависимости для способа сквозного прозвучивания измерения производят в соответствии с рис. 2, а.

а — схема испытания кубов способом сквозного прозвучивания; б — схема испытания кубов способом поверхностного прозвучивания; УП — ультразвуковые преобразователи; 1 — направление формования; 2 — направление испытания при сжатии; l — база прозвучивания

База прозвучивания должна быть не менее 100 мм . Допускается базу прозвучивания снизить до 70 мм при проведении контроля мелкозернистых бетонов и бетона на ранних стадиях твердения (скорость ультразвука менее 2000 м/с).

6.15 При установлении градуировочной зависимости для способа поверхностного прозвучивания измерения производят в соответствии с рис. 2, б.

База прозвучивания должна быть не менее 120 мм .

Измерения следует проводить на поверхности, занимающей при изготовлении то же положение относительно формы и направления формования, что и контролируемая поверхность изделия.

6.16 Число измерений в каждом образце должно быть при сквозном прозвучивании три, при поверхностном — четыре.

6.17 Отклонение отдельного результата измерения косвенного показателя в каждом образце от среднего арифметического значения результатов измерений для данного образца не должно превышать 2 %.

Результаты измерения времени распространения ультразвука в образцах-кубах, не удовлетворяющие этому условию, не учитывают при расчете среднего арифметического значения косвенного показателя в данной серии образцов. При наличии в серии двух образцов, не удовлетворяющих этому условию, результаты испытаний серии бракуют.

6.18 Градуировочную зависимость устанавливают по единичным значениям косвенного показателя и прочности бетона.

Единичное значение прочности бетона при построении градуировочной зависимости для монолитных конструкций — прочность бетона участка. При построении градуировочной зависимости по данным испытаний образцов-кубов за единичное значение прочности бетона принимают среднюю прочность бетона в серии образцов, определенную по ГОСТ 10180.

6.19 В зоне контакта ультразвуковых преобразователей с поверхностью бетона не должно быть раковин и воздушных пор глубиной более 3 мм и диаметром более 6 мм , а также выступов более 0,5 мм . Поверхность бетона должна быть очищена от пыли.

6.21 Установление, проверку градуировочной зависимости и оценку ее погрешности проводят с использованием ЭВМ (программы EXCEL или других программ построения градуировочной зависимости).

Рекомендуется использовать линейную зависимость R = a + bK (гд e R — прочность бетона, К — косвенный показатель).

Коэффициент корреляции градуировочной зависимости должен быть не менее 0,7, а значение относительного среднего квадратического отклонения S т.н.м. / R ср ≤ 0,15. В отдельных случаях, по согласованию с разработчиками настоящего стандарта, допускается использовать градуировочную зависимость при S т.н.м. / R ср ≤ 0,2.

Пример градуировочной зависимости, построенной с использованием программы EXCEL , приведен в приложении Б .

Проверка и корректировка установленной зависимости с учетом дополнительно получаемых результатов испытаний должны производиться не реже одного раза в месяц.

Число образцов или участков при проведении проверки или корректировки должно быть не менее трех.

6.24 Для приборов, градуированных в единицах прочности бетона, градуировка, заложенная в прибор, может использоваться в качестве унифицированной градуировочной зависимости.

7.1 Число и расположение контролируемых участков в конструкциях назначаются с учетом:

— задач контроля (определение фактического класса бетона, разопалубочной или отпускной прочности, выявление участков пониженной прочности и др.);

— вида конструкций (колонны, балки, плиты и др.);

— размещения захваток и порядка бетонирования;

7.2 Прочность бетона в каждом участке можно определять способом поверхностного или сквозного прозвучивания. На каждом участке проводят не менее двух измерений при способе поверхностного прозвучивания и одного измерения при способе сквозного прозвучивания. Отклонение отдельных результатов от среднего при поверхностном прозвучивании должно отвечать условиям п. 6.9. Прочность бетона в участке определяют по среднему значению скорости (времени) ультразвука.

7.3 Для исключения влияния арматуры поверхностное прозвучивание должно производиться по схеме, приведенной на рис. 1.

7.4 Для оценки класса бетона группы (партии) конструкций, конструкции или зоны конструкций общее число участков измерений должно быть не менее 15 при средней прочности до 20 МПа, 20 — при средней прочности до 30 МПа и 25 — при средней прочности выше 30 МПа.

7.5 В монолитных зданиях прочность бетона должна определяться в каждой колонне (или пилоне). Число участков в каждой конструкции должно быть не менее шести. В качестве единицы прочности колонны (пилона) принимается среднее значение из всех измерений при условии, что прочность бетона в каждом участке не отличается от среднего значения более чем на 5 %.

7.6 При контроле прочности бетона монолитных перекрытий, стен и фундаментов в каждой захватке прочность бетона должна определяться не менее чем в трех участках.

7.7 При контроле прочности бетона сборных конструкций и оценке класса бетона в партии число участков определения прочности бетона в произвольно выбранных из партии конструкциях должно быть не менее трех.

7.8 Прочность бетона контролируемого участка конструкции определяют по градуировочной зависимости, установленной в соответствии с разд. 6 при условии, что измеренное по разд. 7 значение косвенного показателя находится в пределах между его наименьшим и наибольшим значениями, полученными при построении градуировочной зависимости.

7.9 Статистическая оценка класса бетона производится по приложению Д настоящего стандарта.

Статистическая оценка класса бетона по результатам испытаний ультразвуковым методом производится только в тех случаях, когда прочность бетона определяется по градуировочной зависимости, построенной в соответствии с разд. 6 настоящего стандарта.

8.1 Результаты испытаний оформляют в заключении.

8.2 В заключении приводят:

— данные об испытанных конструкциях с указанием проектного класса и даты бетонирования и проведения испытаний;

— данные, используемые для построения градуировочной зависимости;

— данные о числе участков определения прочности бетона и об их размещении;

— прочность бетона участков и среднюю прочность бетона захватки или колонны, класс бетона.

8.3 Результаты испытаний представляют в табличной форме, в которой указывают вид конструкций, проектный класс бетона, возраст бетона, прочность бетона каждого контролируемого участка. Форма таблицы приведена в приложении Е.

8.4 В заключении приводят обработку полученных результатов с указанием фактического класса бетона.

1 При измерении времени распространения ультразвука способом сквозного прозвучивания ультразвуковые преобразователи устанавливают с противоположных сторон образца или конструкции в соответствии с рис. 3, а.

Скорость ультразвука V , м/с, вычисляют по формуле

(2)

где t — время распространения ультразвука, мкс;

l — расстояние между центрами зон установки преобразователей (база прозвучивания), мм.

2 При измерении времени распространения ультразвука способом поверхностного прозвучивания ультразвуковые преобразователи устанавливают на одной стороне образца или конструкции в соответствии с рис. 3, б.

а — схема испытания бетона способом сквозного прозвучивания; б — схема испытания бетона способом поверхностного прозвучивания; УП — ультразвуковые преобразователи; l — база прозвучивания

Исходные данные для построения градуировочной зависимости

Оцените статью
Topsamoe.ru
Добавить комментарий