Параметры переменного тока частота

При подключении к источнику переменного тока с синусоидально изменяющейся э. д. с. электрических цепей с линейными сопротивлениями в них будут действовать синусоидально изменяющиеся напряжения и проходить синусоидально изменяющиеся токи. Переменные токи, э. д. с. и напряжения характеризуются четырьмя основными параметрами: периодом, частотой, амплитудой и действующим значением.

Период.Промежуток времени , в течение которого э. д. с, напряжение и или ток совершают полный цикл изменений, называется периодом. Чем быстрее вращается виток или ротор генератора переменного тока, тем меньше период изменения э. д. с. или тока.

Частота.Число полных периодов изменения э. д. с, напряжения или тока в 1 с называется частотой,

f = 1 / T

Она измеряется в герцах (Гц), т. е. числом периодов в секунду. Чем больше частота, тем меньше период изменения тока, напряжения или э. д. с. . В Советском Союзе все электрические станции переменного тока вырабатывают ток, изменяющийся с частотой 50 Гц, т. е. 50 периодов в секунду. В автоматике и радиотехнике применяют электрические токи и более высоких частот. Такие частоты измеряются в килогерцах (1 кГц=10 3 Гц) и мегагерцах (1 МГц=10 6 Гц).

Амплитуда.Наибольшее значение переменного тока (переменных э. д. с. и напряжения) называют амплитудным значением, или амплитудой.

Действующее значение. Ток, напряжение и э. д. с, действующие в электрической цепи в каждый отдельный момент времени, определяются так называемыми мгновенными значениями.Однако судить о переменных э. д. с, токе или напряжении по их мгновенным значениям неудобно, так как эти значения непрерывно меняются. Поэтому оценивать способность переменного тока совершать механическую работу или создавать тепло принято по действующему его значению. Под действующим значением переменного тока понимают силу такого постоянного тока , который, проходя по проводнику в течение некоторого времени, выделит в нем такое же количество тепла, как и данный переменный ток .Действующие значения тока, напряжения и э. д. с. обозначают соответственно I, U, Е.

19.Действующим (эффективным) значением силы переменного тока называют величину постоянного тока, действие которого произведёт такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток за время одного периода. В современной литературе чаще используется математическое определение этой величины — среднеквадратичное значение силы переменного тока.

Иначе говоря, действующее значение тока можно определить по формуле:

.

Для гармонических колебаний тока

Аналогичным образом определяются действующие значения ЭДС и напряжения.

21. АКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

Сопротивление, включенное в цепь переменного тока, в котором происходит превращение электрической энергии в полезную рабо­ту или в тепловую энергию, называется активным сопротивлением.

К активным сопротивлениям при промышленной частоте (50 гц) относятся, например, электрические лампы накаливания и электро­нагревательные устройства.

Рассмотрим цепь переменного тока (рис. 53), в которую вклю­чено активное сопротивление. В такой цепи под действием перемен­ного напряжения протекает переменный ток. Изменение тока в Цепи, согласно закону Ома, зависит только от изменения напряже­ния, подключенного к ее зажимам. Когда напряжение равно нулю, ток в цепи также равен нулю. По мере увеличения напряжения ток в Цепи возрастает и при максимальном значении напряжения ток становится наибольшим. При уменьшении напряжения ток убывает. Когда напряжение изменяет свое направление, ток также изменяет свое направление и т. д.

Из сказанного следует, что в цепи переменного тока с актив­ным сопротивлением по мере изменения по величине и направлению напряжения одновременно пропорционально меняются величина и Направление тока. Это значит, что ток и напряжение совпадают по фазе.

Построим векторную диаграмму действующих величин тока и напряжения для цепи с активным сопротивлением. Для этого отлов жим в выбранном масштабе по горизонтали вектор напряжения Чтобы на векторной диаграмме показать, что напряжение и ток в цепи совпадают по фазе (j=0), откладываем вектор тока I по направлению вектора напряжения.

Сила тока в такой цепи определяется по закону Ома:

В этой цепи среднее значение мощности, потребляемой активным сопротивлением, выражается произведением действующих значения тока и напряжения.

24.

Емкостное сопротивление в цепи переменного тока
При включении конденсатора в цепь постоянного напряже­ния сила тока I=0, а при включении конденсатора в цепь пере­менного напряжения сила тока I ? 0. Следовательно, конденса­тор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.
Мгновенное значение напряжения равно . Мгновенное значение силы тока равно: Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2.
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: , где емкостное сопротивление.
Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты).
Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току).
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной.
22. Индуктивное сопротивление в цепи переменного тока
В катушке, включенной в цепь переменного напряжения, си­ла тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи посто­янного напряжения.
Мгновенное значение силы тока:
Мгновенное значение напряжения можно установить, учиты­вая, что u = — εi, где u – мгновенное значение напряжения, а εi – мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению.
. Следовательно , где амплитуда напряжения. Напряжение опережает ток по фазе на π/2.
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим: — закон Ома для цепи с чисто индуктивной нагрузкой.
Величина — индуктивное сопротивление.
Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления.
В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка.
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной.

25. Резонанс напряжений — резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Пусть имеется колебательный контур с частотой собственных колебаний f, и пусть внутри него работает генератор переменного тока такой же частоты f.

В начальный момент конденсатор контура разряжен, генератор не работает. После включения напряжение на генераторе начинает возрастать, заряжая конденсатор. Катушка в первое мгновение не пропускает ток из-за ЭДС самоиндукции. Напряжение на генераторе достигает максимума, заряжая до такого же напряжения конденсатор.

Далее: конденсатор начинает разряжаться на катушку. Напряжение на нем падает с такой же скоростью, с какой уменьшается напряжение на генераторе.

Далее: конденсатор разряжен до нуля, вся энергия электрического поля, имевшаяся в конденсаторе, перешла в энергию магнитного поля катушки. На клеммах генератора в этот момент напряжение нулевое.

Далее: так как магнитное поле не может существовать стационарно, оно начинает уменьшаться, пересекая витки катушки в обратном направлении. На выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе противоположного знака, причем с той же скоростью, с какой катушка заряжает конденсатор.)

Далее: катушка перезарядила конденсатор до максимального напряжения. Напряжение на генераторе к этому моменту тоже достигло максимального.

Возникла следующая ситуация. Конденсатор и генератор соединены последовательно и на обоих напряжение, равное напряжению генератора. При последовательном соединении источников питания их напряжения складываются.

Следовательно, в следующем полупериоде на катушку пойдет удвоенное напряжение (и от генератора, и от конденсатора), и колебания в контуре будут происходить при удвоенном напряжении на катушке.

В контурах с низкой добротностью напряжение на катушке будет ниже удвоенного, так как часть энергии будет рассеиваться (на излучение, на нагрев) и энергия конденсатора не перейдет полностью в энергию катушки). Соединены как бы последовательно генератор и часть конденсатора.

27. Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Можно показать, что если источник синусоидального тока (например, розетка

220 В, 50 Гц) нагрузить на нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку со сдвинутыми напряжением и током от электростанции требуется больше энергии; избыток передаваемой энергии выделяется в виде тепла в проводах и может быть довольно значительным.

Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощностьрасходуется на совершение работы. Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (то есть от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения. Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В электроэнергетике для коэффициента мощности приняты обозначения cos φ (где φ — сдвиг фаз между силой токаи напряжением) либо λ. Когда для обозначения коэффициента мощности используется λ, его величину обычно выражают в процентах.

При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

В случае синусоидального напряжения, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой, и равен коэффициенту искажений тока.

При подключении к источнику переменного тока с синусоидально изменяющейся э. д. с. электрических цепей с линейными сопротивлениями в них будут действовать синусоидально изменяющиеся напряжения и проходить синусоидально изменяющиеся токи. Переменные токи, э. д. с. и напряжения характеризуются четырьмя основными параметрами: периодом, частотой, амплитудой и действующим значением.

Период. Промежуток времени Т, в течение которого э. д. с, напряжение и или ток i (рис. 169, а) совершают полный цикл изменений, называется периодом. Чем быстрее вращается виток или ротор генератора переменного тока, тем меньше период изменения э. д. с. или тока.

Частота. Число полных периодов изменения э. д. с, напряжения или тока в 1 с называется частотой,

f = 1 / T

Она измеряется в герцах (Гц), т. е. числом периодов в секунду. Чем больше частота, тем меньше период изменения тока, напряжения или э. д. с. (рис. 169,б). В Советском Союзе все электрические станции переменного тока вырабатывают ток, изменяющийся с частотой 50 Гц, т. е. 50 периодов в секунду. В автоматике и радиотехнике применяют электрические токи и более высоких частот. Такие частоты измеряются в килогерцах (1 кГц=10 3 Гц) и мегагерцах (1 МГц=10 6 Гц).

Рис. 169. Кривые изменения синусоидального переменного тока при различной частоте

Из рис. 169,а следует, что в течение времени одного периода Т фаза ?t тока (э. д. с. или напряжения) изменяется на угол 360°, или 2? радиан. Поэтому

? = 2?/T = 2?f

Эту величину называют угловой частотой переменного тока, она имеет размерность рад/с.

Амплитуда. Наибольшее значение переменного тока (переменных э. д. с. и напряжения) называют амплитудным значением, или амплитудой. В рассмотренном нами простейшем генераторе переменного тока (см. рис. 168, а) э. д. с. е дважды достигает амплитудного значения: во время первого полуоборота +Ет (направлена от начала витка к его концу), а во время второго полуоборота — Ет (направлена от конца витка к его началу). Точно так же за один период ток i 2 раза достигает амплитудного значения: Iт и — Iт. Амплитудное значение тока, напряжения и э. д. с. в формулах обозначают соответствующими буквами с индексами «т», т. е. Iт Uт, Ет и др.

Действующее значение. Ток, напряжение и э. д. с, действующие в электрической цепи в каждый отдельный момент времени, определяются так называемыми мгновенными значениями. Эти значения принято обозначать строчными буквами i, и, е. Однако судить о переменных э. д. с, токе или напряжении по их мгновенным значениям неудобно, так как эти значения непрерывно меняются. Поэтому оценивать способность переменного тока совершать механическую работу или создавать тепло принято по действующему его значению. Под действующим значением переменного тока понимают силу такого постоянного тока (прямая 2 на рис. 169,а), который, проходя по проводнику в течение некоторого времени (например, в течение одного периода или 1 с), выделит в нем такое же количество тепла (произведет такую же механическую работу), как и данный переменный ток (кривая 1). Действующие значения тока, напряжения и э. д. с. обозначают соответственно I, U, Е.

При синусоидальном переменном токе

I = Iт / ?2 = 0,707 Iт

Если известно действующее значение тока I, то его амплитудное значение

Iт = ?2 I = 1,41 I

Аналогично для синусоидальных напряжений и э. д. с.

U / Uт = Е1 / Ет = 1 / ?2 = 0,707

На практике для характеристики параметров переменного тока используют, главным образом, действующие значения тока, напряжения и э. д. с. Например, когда говорят, что напряжение в осветительной сети переменного тока составляет 220 В или что по цепи проходит ток 100 А, то это значит, что в данной сети действующее значение напряжения равно 220 В или что действующее значение тока, проходящего по данной цепи, равно 100 А. Электрическая энергия и механическая работа, создаваемые переменным током в различных электрических устройствах, пропорциональны действующим значениям тока и напряжения. Большая часть существующих приборов для измерения переменного тока измеряет действующие значения тока, напряжения и э. д. с.

1. Мгновенное значение — величина тока соответствующая данному моменту времени

2. Амплитуда — максимальное мгновенное значение ( наибольшее значение, которого достигает переменный ток).

Здесь амплитуда 20 мА

3. Период — время в течение которого переменный ток совершает полный цикл своих изменений, возвращаясь к исходной величине.

Обозначается буквой Т

За один период совершается одно колебание переменного тока, т. е. период это время одного колебания. Одно колебание состоит из двух движений тока.

4. Частота — число колебаний переменного тока в секунду

Высокая частота обозначается буквой f

Звуковая частота обозначается F

Единицей измерения частоты является герц, условное обозначение Гц.

Если ток совершает одно колебание в секунду значит частота равна 1 Гц.

На практике применяются кратные единицы частоты — килогерц и мегагерц

1 кГц=1*10 3 Гц; 1мГц= 1*10 6 Гц

По определению период и частота являются взаимно обратными величинами, т. е.

5. Фаза — это состояние переменного тока за определенный период времени

Переменные величины могут совпадать по фазе. Это значит что они одновременно достигают нулевых значений и одновременно достигают максимальных значений одинаковых направлений.

Здесь токи I1 и I2 совпадают по фазе

Здесь напряжения U1 и U2 находятся в противофазе.

Это значит что они одновременно достигают нулевых и максимальных значений противоположных направлений.

Если переменные величины не совпадают по фазе, то говорят что они сдвинуты по фазе.

Сдвиг по фазе выражается в градусах или в долях периода. Весь период 360 0 , так как период получается за один полный оборот проводника по окружности в магнитном поле.

Здесь напряжение отстает от тока на 90 0 , т. е . ток и напряжение сдвинуты по фазе на 90 0 .

Действительно в начале ток уже достиг максимума, а напряжение находится на нуле. Напряжение достигнет максимума через 90 0 .

Сдвиг по фазе обозначается греческой буквой φ например φ=90 0 .

Оцените статью
Topsamoe.ru
Добавить комментарий