Одна рабочая секционированная выключателем система шин

Одна рабочая система шин, секционированная выключателем

Такая схема применяется для РУ – 6,10, 35 кВ электростанций и подстанций. В нормальном режиме работы секционный выключатель (СВ) отключен. При исчезновении напряжения на одной секции СВ автоматически включается действием устройства АВР (автоматический ввод резерва). Секционный выключатель может быть включен оператором, если по какой-либо причине выводится из работы один ввод от источника. Схема позволяет при этом сохранить сохранить питание всех подключенных линий к потребителям. Так как потребители подключаются парными линиями к разным секциям, вывод в ремонт одной секции также не приводит к нарушению электроснабжения потребителей.

Операции с разъединителями допускаются только при отключенном выключателе соответствующего присоединения.

Достоинство рассматриваемой схемы с одной системой сборных шин:

1. Простота РУ, что практически исключают ошибочные операции с разъединителями. Тем не менее, предусматриваются блокирующие уст­ройства, препятствующие неправильным операциям.

2. Низкая стоимость.

Недостатки ее следующие:

1. Профилактический ремонт сборных шин и шинных разъединителей связан с отключением всего устройства на время ремонта:

2. Ремонт выключателей и линейных разъединителей связан с от­ключением соответствующих присоединений, что нежелательно, а в некоторых случаях недопустимо;

3. Короткое замыкание в зоне сборных шин приводит к полному от­ключению РУ:

4. То же самое имеет место в случае внешнего замыкания и отказа выключателя соответствующего присоединения.

Чтобы избежать полного отключения РУ при замыкании в зоне сборных шин и обеспечить возможность их ремонта по частям, прибегают к секционированию сборных шин, т. е. разделению их на части — секции с установкой в точках деления выключателей. Эти выключатели называют

секционными (рис 1.б). Редко встречаются устройства, сборные шины которых секционированы через разъединители. Секционирование должно быть выполнено так, чтобы каждая секция имела источники энергии (генераторы, трансформаторы) и соответствующую нагрузку. Присоединения распределяют между секциями так, чтобы вынужденное отключение одной секции не нарушало электроснабжения потребителей.

При нормальной работе секционные выключатели замкнуты, т.к. генераторы должны работать параллельно. В случае к.з. в зоне сборных шин поврежденная секция отключается автоматически. Остальные секции остаются в работе. Таким образом, секционирование способствует повышению надежности РУ.

В РУ низшего напряжения 6-10 кВ подстанций секционные выключатели разомкнуты в целях ограничения тока к.з.

Выключатели снабжают устройствами автоматического включения резервного питания (АВР), замыкающими выключатели в случае отключения трансформатора, чтобы не нарушать электроснабжения потребителей.

Одна рабочая система шин с обходной

Схема является усовершенствованием схемы с одной системой шин добавлением к рабочей системе шин (РСШ) специальной обходной (ОСШ).

Схема применяется для РУ высшего напряжения распределительных подстанций 110 – 220 кВ. Обходная система шин используется при выводе в ремонт одного из выключателей присоединений без отключения линий к потребителям. Для этого включается обходной выключатель (ОВ), который заменяет ремонтируемый выключатель. В случае ремонта одной из секций рабочей системы шин неизбежно отключение подключенных к ней присоединений.

Для обеспечения возможности поочередного ремонта выключателей, не нарушая работы соответствующих цепей, предусматривают обходные выключатели и обходную систему шин с разъединителями в каждом присоединении (рис. 1 в). При нормальной работе установки обходные разъединители и обходные выключатели отключены.

Распределительные устройства с одной секционированной системой сборных шин применяется в РУ до 220 кВ включительно. Устройства с одной секционированной системой сборных шин (без обходной системы) применяют в качестве РУ 6—35 кВ подстанции, РУ 6 – 10 кВ станций типа ТЭЦ. Аналогичные устройства, но с обходной системой шин, применяют при ограниченном числе присоединении в110 – 220 кВ.

При большом количестве присоединений на повышенном напряжении возможно применение схем с одиночной секционированной системой шин (см. рис. 2.3). Эта схема обладает рядом существенных недостатков, в том числе необходимостью отключения линии или источников питания на все время ремонта выключателя в их цепи. При напряжении 35 кВ отключение линии будет непродолжительным, так как длительность ремонта выключателей невелика. В этот период используется резерв по сети, чтобы обеспе­чить питание потребителей. При напряжениях 110 кВ и выше длитель­ность ремонта выключателей,

Рис. 2.3. Схемы с одной системой сборных шин несекционированых (а) и секционированных (б)

особенно воздушных, возрастает и становит­ся недопустимым отключать цепь на все время ремонта, поэтому схема по рис. 2.3 применяется только для РУ 35 кВ.

Читайте также:  Виды монтажа теплого пола

Одним из важных требований к схемам на стороне высшего напряже­ния является создание условий для ревизий и опробований выключателей без перерыва работы. Этим требованиям отвечает схема с обходной систе­мой шин (рис. 2.4). В нормальном режиме обходная система шин АО на­ходится без напряжения, разъединители QSO, соединяющие линии и транс­форматоры с обходной системой шин, отключены. В схеме предусматри­вается обходной выключатель QO, который может быть присоединен к любой секции с помощью развилки из двух разъединителей. Секции в этом случае расположены параллельно друг другу. Выключатель QO мо­жет заменить любой другой выключатель, для чего надо произвести сле­дующие операции: включить обходной выключатель QO для проверки исправности обходной системы шин, отключить Q0, включить QSO, вклю­чить QO, отключить выключатель Q1, отключить разъединители QSI и QS2.

Рис. 2.4. Схема с одной рабочий и обходной системами шин:

а – схема с совмещенным обходным и секционным выключателем и отделителями в цепях трансформатора; б – режим замены линейного выключателя обходным; в – схема с обходным и секционным выключателем.

После указанных операций линия получает питание через обходную си­стему шин и выключатель QO от первой секции (2.4, б). Все эти операции производятся без нарушения электроснабжения по линии, хотя они свя­заны с большим количеством переключений.

С целью экономии функции обходного и секционного выключателей могут быть совмещены. На схеме рис. 2.4, а кроме выключателя QO есть перемычка из двух разъединителей QS3 и QS4. В нормальном режиме эта перемычка включена, обходной выключатель присоединен к секции В2 и также включен. Таким образом секции В1 и В2 соединены между собой через QO, QS3, QS4, и обходной выключатель выполняет функции секцион­ного выключателя. При замене любого линейного выключателя обходным необходимо отключить QO, отключить разъединитель перемычки (QS5), а затем использовать QO по его назначению. На все время ремонта линей­ного выключателя параллельная работа секций, а следовательно, и линий нарушается. В цепях трансформаторов в рассматриваемой схеме установ­лены отделители (могут устанавливаться выключатели нагрузки QW). При повреждении в трансформаторе (например, Т1) отключаются выключатели линий W1, W3 и выключатель QO. После отключения отделителя QR1 вы­ключатели включаются автоматически, восстанавливая работу линий. Та­кая схема требует четкой работы автоматики.

Схема по рис. 2.4, а рекомендуется для ВН подстанций (110 кВ) при числе присоединений (линий и трансформаторов) до шести включительно, когда нарушение параллельной работы линий допустимо и отсутствует перспектива дальнейшего развития. Если в перспективе ожидается расши­рение РУ, то в цепях трансформаторов устанавливаются выключатели. Схемы с трансформаторными выключателями могут применяться для на­пряжений 110 и 220 кВ на стороне ВН и СН подстанций [3].

При большем числе присоединений (7 — 15) рекомендуется схема с от­дельными обходным QO и секционным QB выключателями. Это позво­ляет сохранить параллельную работу линий при ремонтах выключателей (рис. 2.4, в).

В обеих рассмотренных схемах ремонт секции связан с отключением всех линий, присоединенных к данной секции, и одного трансформатора, поэтому такие схемы можно применять при парных линиях или линиях, резервируемых от других подстанций, а также радиальных, но не более одной на секцию [3].

На электростанциях возможно применение схемы с одной секциониро­ванной системой шин по рис. 2.4, в, но с отдельными обходными выклю­чателями на каждую секцию.

г)Схема с двумя системами шин

Схемы РУ с двумя системами сборных шин являются естественным развитием схем с одной системой сборных шин. В схеме с двумя системами сборных шин и одним выключателем на цепь (рис. 2.5, а) нормально в работе находятся обе системы шин при включенном или отключен­ном (по режимным соображениям) шиносоединительном выключателе ШСВМ.

Каждое присоединение подключается (согласно принятой фиксации) к той или другой системе сборных шин, выполняющих в данном случае роль не только ремонтных, но и оперативных аппаратов, т. е. таких аппаратов, с помощью которых возможно переключение цепей с одной системы сборных шин на другую, при помощи разъединителей развилки. Эта операция выпол­няется при включенном ШСВМ[4].

Читайте также:  Куплю ходовые огни на авто

При помощи ШСВМ можно отключить любое присоеди­нение, если оно по каким-либо причинам не может быть отключено «своим» выключателем. Для этого включается ШСВМ и все присоединения, кроме отключаемого, перево­дятся на одну из систем сборных шин, а отключаемое ос­тается на другой системе. Затем это присоединение вместе с системой сборных шин отключается ШСВМ.

ШСВМ
ШСВМ
ШСВМ
ШСВМ

Рис. 2.5. Распределительные устройства с двумя системами сборных шин:

а — с одним выключателем на цепь; б — оперативная схема при выводе в ре­монт выключателя присоединения с установкой ремонтной перемычки; в — одна из систем сборных шин секционирована; 1 — развилка шинных разъединителей; 2 — ремонтная перемычка; 3 — выключатель присоединения отключен и выведен из схемы; 4 — присоединение секционного выключателя с реактором

Шиносоединительный выключатель используется также при выводе в ремонт выключателей присоединений. Элек­трическая цепь, выключатель которой предполагается вы­вести в ремонт, отключается, выводимый в ремонт выклю­чатель отсоединяется от шин, и далее цепь включается в работу через ШСВМ. При осуществлении этой операции от­соединенные от выключателя шины соединяются между собой специальными ремонтными перемычками из провода (рис. 2.5, б).

Схема предоставляет возможность поочередного выво­да в ремонт систем сборных шин без прекращения работы электрических цепей. Для ремонта шинных разъедините­лей отключается лишь та цепь, разъединители которой выводятся в ремонт.

При повреждении на системе сборных шин автоматиче­ски отключаются присоединения только этой системы сбор­ных шин. Для ввода присоединений в работу необходимо переключение их шинными разъединителями с поврежден­ной на оставшуюся в работе систему сборных шин. К по­тере присоединений электроустановки приводит также от­каз в работе выключателя цепи во время к.з. на ней.

Существенным недостатком схемы является отключение всей электроустановки при следующих обстоятельствах:

коротком замыкании на рабочей системе сборных шин, когда другая система сборных шин выведена в ремонт;

создании ремонтных схем, связанных с ремонтом вы­ключателей;

повреждении ШСВМ, а также не отключении его во вре­мя к. з. на одной из систем сборных шин, когда в работе находились обе системы сборных шин.

К недостаткам схемы относят увеличение в 2 раза числа шинных разъединителей и более сложное выполне­ние блокировки между выключателями и разъединителя­ми, а также между рабочими и заземляющими разъеди­нителями.

Использование шинных разъединителей в качестве опе­ративных аппаратов, несмотря на наличие блокировок, не исключает ошибочных действий персонала при переклю­чениях. Часты, например, случаи включения (отключения) шинных разъединителей под током нагрузки, включения шинных разъединителей на не снятые заземления и т. д.

Надежность схем с двумя системами сборных шин и од­ним выключателем на цепь повышается при секционирова­нии шин выключателем. Обычно секционируется одна рабо­чая система сборных шин, другая не секционируется и явля­ется резервной (рис. 2.5, в). В схеме имеются два шиносоединительных выключателя, соединяющих каждую секцию шин с резервной системой сборных шин. Это позволяет выводить в ремонт любую секцию шин путем перевода ее присоединений на резервную систему сборных шин. При необходимости возможно сохранение параллельной работы источников питания включением другого ШСВМ, который будет выполнять роль секционного выключателя.

ГЛАВНЫЕ СХЕМЫ распределительных устройств ЭЛЕКТРОСТАНЦИЙ И ПОДСТАНЦИЙ

Схемой электрических соединений электроустановки называют чертеж, на котором в условных обозначениях показаны основные элементы (генераторы, трансформаторы, а также двигатели, отключающие аппараты, измерительные трансформаторы), соединенные в той же последовательности, как и в действительности.

Схемы выполняются в однолинейном и трехлинейном изображении. Для упрощения и наглядности чаще используют однолинейные схемы, где показывают соединения для одной фазы.

Схемы первичных цепей (главные схемы) показывают цепи, по которым электроэнергия передается от источников к потребителям.

Кроме электрооборудования первичных цепей на электростанциях и подстанциях применяют вспомогательное оборудование (измерительные приборы, устройства релейной защиты и автоматики), предназначенное для управления и контроля за работой первичного оборудования. Схемами вторичных цепей называют схемы соединения вторичного (вспомогательного оборудования). Все соединения во вторичных цепях выполняют изолированными проводами и контрольными кабелями.

При выборе главных схем распределительных устройств станций или подстанциий учитываются следующие факторы:

– значение и роль электростанции или подстанции в энергосистеме (электростанции – базисные или пиковые, приближенные к промышленным узлам или удаленные, связанные с другими электростанциями через шины высшего напряжения или среднего напряжения; подстанции – тупиковые, отпаечные, проходные или распределительные;

Читайте также:  Как сделать шнековый пресс для брикетов

– категория потребителей по степени надежности электроснабжения;

– уровень токов короткого замыкания

Главные схемы электростанций должны удовлетворять основным требованиям:

– надежность, т.е. способность схемы обеспечить бесперебойное электроснабжение потребителей, выдачу электроэнергии или транзит мощности при повреждениях оборудования;

– приспособленность к проведению ремонтов основного оборудования без ограничения электроснабжения потребителей;

– оперативная гибкость, т.е. приспособленность для проведения оперативных переключений минимальным числом операций за минимальное время и с минимальным риском;

Структурные схемы (блок-схемы) электростанций и подстанций отражают связи генераторов и трансформаторов с распределительными устройствами (РУ) разного напряжения. Распределительное устройство представляет собой совокупность оборудования одного напряжения, соединенного по определенной схеме и воплощающее в натуре эту схему.

Виды главных схем

Одна рабочая система шин, секционированная выключателем

Такая схема применяется для РУ – 6,10, 35 кВ электростанций и подстанций. В нормальном режиме работы секционный выключатель (СВ) отключен. При исчезновении напряжения на одной секции СВ автоматически включается действием устройства АВР (автоматический ввод резерва). Секционный выключатель может быть включен оператором, если по какой-либо причине выводится из работы один ввод от источника. Схема позволяет при этом сохранить сохранить питание всех подключенных линий к потребителям. Так как потребители подключаются парными линиями к разным секциям, вывод в ремонт одной секции также не приводит к нарушению электроснабжения потребителей.

Блочные схемы

Блочные схемы (два блока линия-трансформатор с выключателями или отделителями в цепях трансформаторов и ремонтной перемычкой со стороны линий)

применяются для распределительных устройств высшего напряжения тупиковых и отпаечных подстанций 35 – 220 кВ. Схемы с отделителями применяются для РУ 110 кВ, если мощность трансформаторов не

превышает 25 МВА.Ток холостого хода таких трансформаторов невелик и при необходимости отключается отделителем. При большом токе холостого хода для отключения трансформатора пришлось бы обращаться на питающую электростанцию или подстанцию.

Ремонтная перемычка используется при выводе в ремонт одной из питающих линий. В ремонтной перемычке устанавливаются два разъединителя. Если бы в перемычке был установлен только один разъединитель, его ремонт вызвал бы полное погашение подстанции.

Мостиковые схемы

Мостиковые схемы применяются для РУ высшего напряжения проходных (транзитных) подстанций 35 – 220 кВ. Существуют два варианта мостиковой схемы с выключателями в цепях трансформаторов (а,б) и мостиковая схема с отделителями в цепях трансформаторов (в), которая применяется для проходных подстанций 110 кВ с трансформаторами мощностью до 25 МВА.

В мостиковых схемах транзит мощности осуществляется через рабочую перемычку с выключателем. Ремонтная перемычка служит для сохранения транзита при выводе в ремонт выключателя рабочей перемычки.

В схеме а) транзит мощности прерывается, если происходит повреждение в трансформаторе. Иногда это необходимо и использование схемы обоснованно. В схеме б) при повреждении трансформатора отключается только ближайший к нему выключатель. Транзит мощности через рабочую перемычку сохраняется. Поэтому схема б) применяется в случаях, когда передача транзита через подстанцию имеет большое значение для энергосистемы.

Схема квадрата

Схема применяется для РУ высшего напряжения проходных подстанций 220 кВ кВ. В нормальном режиме работы включены все выключатели. Ремонт любого выключателя может быть осуществлен без нарушения транзита мощности через подстанцию и отключения трансформаторов. Повреждения трансформаторов и выключателей также не приведут к нарушению транзита. Поэтому схема используется при повышенных требованиях к надежности транзита.

Одна рабочая система шин с обходной

Схема является усовершенствованием схемы с одной системой шин добавлением к рабочей системе шин (РСШ) специальной обходной (ОСШ).

Схема применяется для РУ высшего напряжения распределительных подстанций 110 – 220 кВ. Обходная система шин используется при выводе в ремонт одного из выключателей присоединений без отключения линий к потребителям. Для этого включается обходной выключатель (ОВ), который заменяет ремонтируемый выключатель. В случае ремонта одной из секций рабочей системы шин неизбежно отключение подключенных к ней присоединений.

Дата добавления: 2018-05-12 ; просмотров: 635 ; ЗАКАЗАТЬ РАБОТУ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector