Напряжение на конденсаторе в цепи синусоидального тока

Если приложенное к конденсатору напряжение не меняется во времени, то заряд q=CU на одной его обкладке и заряд –q=-Cu на другой (С-ёмкость конденсатора) неизменны и ток через конденсатор не проходит ( ). Если же напряжение на конденсаторе меняется во времени, например по синусоидальному закону

(2-34)

то по синусоидальному закону будет меняться заряд q конденсатора:

(2-35)

и конденсатор будет периодически перезаряжаться. Периодическая перезарядка конденсатора сопровождается протеканием через него синусоидального тока

(2-36)

Из сопоставления (2-34) и (2-36) видно, что ток через конденсатор опережает по фазе напряжение на конденсаторе на 90º. На векторной диаграмме вектор тока направлен по вещественной оси комплексной плоскости, а вектор напряжения на конденсаторе направлен в отрицательном направлении мнимой оси.

На рис. 2-16 изображен конденсатор емкостью С, по которому протекает синусоидальный ток .

Рис. 2-16. Конденсатор в цепи синусоидального тока

На рис. 2-17 изображена векторная диаграмма при протекании через конденсатор синусоидального тока.

Рис. 2-17. Векторная диаграмма

Таким образом, при протекании синусоидального тока через конденсатор вектор тока опережает вектор напряжения на конденсаторе на 90º.

Из выражения (2-36) запишем амплитуду тока :

(2-37)

Ясно, что выражение в знаменателе есть некоторое сопротивлению согласно закону Ома:

, (2-38)

которое называют емкостным сопротивлением конденсатора.

Проверим размерность Xc:

(2-39)

Таким образом, конденсатор оказывает переменному току сопротивление . Оно обратно пропорционально угловой частоте ω.

(2-40)

Графики мгновенных значений U,I,p приведены на рис. 2-18.

Рис. 2-18. Графики мгновенных значений тока , напряжения и

Во вторую и все чётные четверти периода мгновенная мощность р положительная, и в этой четверти периода энергия от источника передаётся конденсатору и идёт на создание электрического поля конденсатора.

В первую и все нечётные четверти периода мгновенная мощность р отрицательная, и энергия, занесённая в электрическое поле конденсатора, возвращается источнику.

Мгновенная мощность положительная, когда напряжение и ток имеют одинаковые знаки, и отрицательная – когда напряжение и ток имеют противоположные знаки.

Мгновенная мощность р равна нулю, когда либо ток , либо напряжение проходят через нуль. Это происходит каждую четверть, поэтому мгновенная мощность изменяется с двойной частотой питающей сети.

Таким образом, в конденсаторе не происходит потребление энергии от источника, а происходит накапливание энергии в электрическом поле конденсатора в чётные четверти периода и возврат накопленной энергии источнику в нечётные четверти периода.

Напомним, что элемент, не потребляющий энергию от источника, называется реактивным и обладает реактивным сопротивлением. То есть конденсатор – это тоже реактивный элемент, обладающий реактивным сопротивлением .

Диэлектрик, находящийся между обкладками конденсатора, всегда неидеален, то есть в нем всегда есть некоторые потери энергии, которые относительно малы и ими часто можно пренебречь. Если требуется учесть их в расчёте , то конденсатор заменяют схемой замещения (рис. 2-19), в которой параллельно ёмкости присоединено активное сопротивление R, потери энергии в котором имитируют потери энергии в реальном диэлектрике.

Рис. 2-19. Схема замещения реального конденсатора

На рис. 2-20 приведена векторная диаграмма для реального конденсатора.

Читайте также:  Как сделать дешевый забор своими руками

Рис. 2-20. Векторная диаграмма реального конденсатора

На диаграмме вектор напряжения на конденсаторе направлен по вещественной оси комплексной плоскости. Вектор тока через конденсатор опережает вектор напряжения на 90º, то есть направлен в положительном направлении мнимой оси. Вектор тока через сопротивление R совпадает по направлению , то есть направлен по вещественной оси. Ток через реальный конденсатор равен согласно первому закону Кирхгофа:

(2-41)

В результате ток реального конденсатора опережает на угол меньший 90º. Угол между токами и называют углом потерь, он зависит от сорта диэлектрика и частоты. В справочниках обычно приводят или обратную величину

(2-42)

которую называют добротностью контура.

Чем лучше диэлектрик, то есть чем меньше в нём потери энергии, тем меньше угол и тем больше добротность конденсатора .

Конденсатор – элемент электрической цепи, предназначенный для использования его ёмкости. В конденсаторе накапливается энергия электрического поля. Свойство элемента запасать электрический заряд характеризует ёмкость. Этот параметр является коэффициентом пропорциональности между зарядом q и прикладываемым напряжением u

q = C·u,

где q – выражается в кулонах [Кл], С – в фарадах [Ф], u – в вольтах [B].

При изменении напряжения на конденсаторе изменяется заряд и возникает электрический ток

Идеализированный конденсатор обладает только параметром С.

Рассмотрим электрические процессы в цепи с идеальным ёмкостным элементом, рис. 3.6, а.

Пусть напряжение источника изменяется по закону

u = Um·sinω·t, (ψu = 0).

В цепи возникает ток

Из полученного выражения видно, что начальная фаза тока ψi = π/2. Угол сдвига фаз между напряжением и током составляет

φ = ψuψi = 0 – π/2 = – π/2.


Рис 3.6 – Схема замещения цепи с емкостным элементом (а), временная (б) и векторная (в) диаграммы

Следовательно, синусоида напряжения на емкости отстаёт от синусоиды тока на угол π/2, рис. 3.6, б, в. На практике, если в электрической цепи напряжение отстаёт по фазе от тока, говорят об ёмкостном характере нагрузки.

Im = ω·C·Um,

Это выражение представляет закон Ома. Величину 1/ω·C называют ёмкостным сопротивлением конденсатора и измеряют в [Ом]

.

Ёмкостное сопротивление имеет место только в том случае, когда происходит изменение напряжения на обкладках конденсатора. При постоянном напряжении (f = 0) ёмкостное сопротивление равно бесконечности (т. е. В цепи будет разрыв).

Мгновенная мощность ёмкостного элемента

Амплитуда мгновенной мощности равна реактивной мощности

QC = U·I = XC·I 2 .

Активная мощность (средняя за период) равна нулю, рис. 3.6, б.

С энергетической точки зрения график мгновенной мощности отражает накопление энергии в электрическом поле конденсатора (когда мощность положительная) и возврат её источнику питания (когда мощность отрицательная). Следовательно, ёмкостной элемент является реактивной нагрузкой.

Выразим электрические величины в комплексной форме. Напряжение и ток (действующие значения) в цепи имеют вид

U = U·e j · ψ u , I = I·e j · ψ i , ψu = 0, ψi = π/2, φ = – π/2.

Комплексное сопротивление цепи

Ёмкостное сопротивление является отрицательным мнимым числом.

13 цепь синусоидального тока с реальной катушкой индуктивности.

Последовательно соединенные реальная индуктивная
катушка и конденсатор в цепи синусоидального тока

Читайте также:  Как правильно выбрать сковороду с антипригарным покрытием

Катушка с активным сопротивлением R и индуктивностью L и конденсатор емкостью С включены последовательно(рис.6.8). В схеме протекает синусоидальный ток

.

Определим напряжение на входе схемы.
В соответствии со вторым законом Кирхгофа,

(6.15)

Подставим эти формулы в уравнение (6.15). Получим:

(6.16)

Из выражения (6.16) видно: напряжение в активном сопротивлении совпадает по фазе с током, напряжение на индуктивности опережает по фазе ток на 90 o , напряжение по емкости отстает по фазе от тока на 90 o .
Запишем уравнение (6.16) в комплексной форме:

(6.17)

Поделим левую и правую части уравнения (6.17) на √2.
Получим уравнение для комплексов действующих значений токов и напряжений

, (6.18)

где – комплексное сопротивление цепи;
– модуль комплексного сопротивления, или полное сопротивление цепи;
– начальная фаза комплексного сопротивления.

При построении векторных диаграмм цепи рассмотрим три случая.

  1. XL > XC, цепь носит индуктивный характер. Векторы напряжений на индуктивности и емкости направлены в противоположные стороны, частично компенсируют друг друга. Вектор напряжения на входе схемы опережает вектор тока(рис.6.9).
  2. Индуктивное сопротивление меньше емкостного. Вектор напряжения на входе схемы отстает от вектора тока. Цепь носит емкостный характер (рис.6.10).
  3. Индуктивное и емкостное сопротивления одинаковы. Напряжения на индуктивности и емкости полностью компенсируют друг друга. Ток в цепи совпадает по фазе с входным напряжением. В электрической цепи наступает режим резонансного напряжения (рис.6.11).

Ток в резонансном режиме достигает максимума, так как полное сопротивление (z) цепи имеет минимальное значение.

Условие возникновения резонанса: , отсюда резонансная частота равна

.

Из формулы следует, что режима резонанса можно добиться следующими способами:

  1. изменением частоты;
  2. изменением индуктивности;
  3. изменением емкости.

В резонансном режиме входное напряжение равно падению напряжения в активном сопротивлении. На индуктивности и емкости схемы могут возникнуть напряжения, во много раз превышающие напряжение на входе цепи. Это объясняется тем, что каждое напряжение равно произведению тока I (а он наибольший), на соответствующее индуктивное или емкостное сопротивление (а они могут быть большими).

.

Рис. 6.9 Рис. 6.10 Рис. 6.11

14 цепь синусоидального тока с последовательным соединением активного и емкостного сопротивлений.

15 цепь переменного однофазного тока с последовательным соединением активного, индуктивного и емкостного сопротивлений.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9848 – | 7704 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Конденсатор представляет собой две металлические пластины (обкладки), разделённые диэлектриком. Если приложить к конденсатору постоянное напряжение, на его обкладки поступит электрический заряд, как показано на рис. 53. Полученный заряд может сохраняться на обкладках долгое время. Заряды со знаком "плюс" и "минус" притягиваются друг к другу и не могут уйти с обкладок. В то же время они не могут и соединиться, нейтрализовав друг друга, т.к. этому препятствует диэлектрик (изоляция) между обкладками. Таким образом, конденсатор это устройство, предназначенное для накопления и хранения электрического заряда. (Поскольку изоляция между обкладками неидеальна, рано или поздно конденсатор разрядится – потеряет заряд)

Читайте также:  Лобзик макита все инструменты

Рис. 53. Конденсатор хранит заряд на своих обкладках

Постоянный ток не может проходить через конденсатор. Этому препятствует диэлектрик между обкладками.

Рис. 54. В цепи переменного напряжения через конденсатор протекает ток.

Как ни странно, переменный ток может проходить в цепи с конденсатором, несмотря на наличие изоляции между обкладками.

При переменном напряжении конденсатор, при смене полупериода, вынужден постоянно перезаряжаться. При этом меняется полярность и величина заряда на обкладках конденсатора (см. рис. 54).

В положительный полупериод синусоиды на верхнюю обкладку конденсатора поступает положительный заряд, а на нижнюю – отрицательный.

В отрицательный полупериод (его полярность показана в скобках) заряд на обкладках меняется на противоположный.

При работе в цепях синусоидального тока конденсатор постоянно перезаряжается. В проводниках, подводящих напряжение к конденсатору, происходит перемещение заряда. Это означает, что в цепи протекает ток.

Вместо термина "конденсатор" часто используется термин "емкость". Это слово имеет в электротехнике два значения:

– параметр конденсатора, характеризующий его величину заряда, который он способен накапливать;

Конденсатор оказывает сопротивление проходящему току. Это сопротивление называется ёмкостным, обозначается XCи определяется по формуле:

, где:

f – частота приложенного напряжения;

С – ёмкость конденсатора (Фарад).

Ёмкостное сопротивление зависит от частоты. С ее увеличением емкостное сопротивление уменьшается. Соответственно, ток в цепи с конденсатором увеличивается:

В конденсаторе ток опережает напряжение на угол радиан (90 градусов).

Рис. 55. В конденсаторе ток опережает по фазе приложенное напряжение

Конденсатор, как и катушка индуктивности, относится к реактивным элементам. В реактивных элементах происходит обратимое преобразование энергии. Конденсатор сначала забирает энергию от источника напряжения, накапливает энергию в своём электрическом поле, а затем отдает ее генератору. Затем процесс повторяется.

В конденсаторе выделяется реактивная мощность:

,

Пример 12. Идеальный конденсатор в цепи синусоидального тока.

К конденсатору емкостью С = 63,7 мкФ приложено напряжение u=141sin314t, В. Определить действующее значение тока и реактивную мощность конденсатора.

Идеальный конденсатор обладает только одним параметром – ёмкостью. Влияние сопротивления изоляции между обкладками не учитывается.

В условии задачи приведено уравнение напряжения, действующего на входе цепи, имеющее вид: u = Um sinwt. Из этого уравнения можно узнать амплитуду приложенного напряжения Um =141В и угловую частоту w = 314рад/сек.

Зная амплитуду Um, приложенного напряжения, находим действующее значение напряжения U=Um/1,41=141/1,41=100B.

Зная, что угловая частота w = 2pf, находим частоту приложенного к конденсатору напряжения f = w/2p =314/6,28=50Гц.

Емкостное сопротивление конденсатора

Xc=1/2pfC=1 / 6,28·50·63,7·10 -6 =50 Ом.

В этой формуле ёмкость конденсатора выражена в фарадах, для чего, предварительно, был сделан перевод ёмкости конденсатора из микрофарад, приведённых в условии задачи, в фарады. Приставка "микро" обозначает одну миллионную долю, следовательно:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector