Многоцелевые электромеханические приводы вращательного действия epar

Привод представляет собой электромоторное устройство с муфтой тарирования крутящего момента. Эти приводы используют в приспособлениях станков токарно-револьверной группы, агрегатных станокв, в качестве приводов винтовых зажимов приспособлений-спутников автоматических линий. Схема такого привода приведена на рис.62. От электромотора 1 через редуктор 2, кулачковую муфту 3 вращение передается на винт 6, который перемещает гайку 7 с тягой зажимного механизма 8. При достижении на заготовках необходимой силы зажима правая половина муфты 3 останавливается и отжимается вправо, сжимая пружину 4. Концевой выключатель отключает двигатель. Величину исходной силы на тяге 8 можно регулировать, изменяя предварительную затяжку пружины гайкой 5. Задавая момент М, который должна передать муфта 3 для получения необходимой силы W, можно определить силу предварительной затяжки пружины (рис.2.68). Открепление заготовки осуществляется при реверсировании электромотора 1.

Рис. 2.68. Схема электромеханического привода

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9030 — | 7256 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Электромеханический привод EPAL линейного действия разработан для применения в промышленном технологическом оборудовании, сельскохозяйственных и транспортных машинах. В конструкции привода применено большое количество стандартных элементов и узлов, что позволяет сократить время производства изделия.

Привод EPAL состоит из бесколлекторного электродвигателя постоянного тока, эпициклоидного редуктора, шариковинтовой передачи и блока управления. Новые технические решения в конструкции эпициклоидной передачи, направлены на повышение ресурса и увеличение сроков межремонтной эксплуатации. Перемещение штока привода (уборка/выпуск) осуществляется в зависимости от задающего управляющего сигнала.

Владельцы патента RU 2678385:

Изобретение относится к области машиностроения, а более конкретно к электромеханическим приводам. Электромеханический рулевой привод вращательного действия состоит из закрепленных на пластине (1) электродвигателя (2), датчика обратной связи (3) и редуктора. В корпусе редуктора размещены выходная и промежуточная ступени, реализованные с помощью волновых передач с промежуточными телами качения. Выходная ступень волновой передачи с промежуточными телами качения (10) выполнена с оптимальным передаточным числом, обеспечивающим минимальный наружный диаметр. Развиваемый момент привода достигнут за счет числа рядов тел качения. Промежуточная ступень волновой передачи с промежуточными телами качения (10) дополнена цилиндрическими парами (4, 5, 6). Указанные пары осуществляют кинематическую связь между электродвигателем (2) и входным валом промежуточной ступени и размещены со стороны, противоположной выходному валу выходной ступени редуктора. Датчик обратной связи (3) размещен на корпусе редуктора с противоположной стороны от выходного вала выходной ступени (12). Достигается расширение области применения. 2 ил.

Изобретение относится к области электромеханики, предназначено для преобразования сигнала управления и электрической энергии источника питания в механическую энергию вращательного движения и может быть использовано в качестве исполнительного механизма приводов управления аэродинамическими поверхностями летательного аппарата.

Известны электромеханические приводы управления аэродинамическими поверхностями, выходное звено которых совершает вращательное движение (Патент РФ №2519612 МПК: В64С 13/28, F16H 37/02, F16H 49/00, Патент РФ №2321138 МПК: Н02K 7/116, F04B 1/20, Патент РФ №2408125 МПК: B64D 31/14, Н02K 7/116). Данные механизмы размещаются в пространстве подвижной аэродинамической поверхности с целью освобождения полезного объема в полости крыла.

Наиболее близким по совокупности признаков является силовой мини-привод подвижной аэродинамической поверхности летательного аппарата (Патент РФ №2408125). Конструкция прототипа содержит корпус в котором соосно размещены электродвигатель, многоступенчатая волновая передача, датчик обратной связи, расположенный на выходном звене выходной ступени волновой передачи, при этом корпус механизма располагается в объеме аэродинамической поверхности, имеющей ось вращения не соосную с осью вращения мини-привода, и жестко с ней соединен, а на выходном звене мини-привода эксцентрично его оси вращения крепится тяга, соединяющая мини-привод с неподвижной частью летательного аппарата. Таким образом поворот выходного звена мини-привода ведет к повороту аэродинамической поверхности относительно ее оси вращения.

Недостатком данного изобретения является выполнение привода без минимизации его габаритных размеров, что ограничивает область применения из-за невозможности вписаться в тонкий мидель без использования обтекателя на аэродинамической поверхности, ухудшающего аэродинамику летательного аппарата.

Цель предполагаемого изобретения заключается в создании привода с минимизацией габаритов, что позволит его использовать в более тонких миделях аэродинамических поверхностей без использования обтекателя, т.е. расширить область его применения.

Заявленный результат достигается тем, что электромеханический рулевой привод вращательного действия состоящий из электродвигателя, датчика обратной связи, редуктора, в корпусе которого размещены выходная и промежуточная ступени, реализованные с помощью волновых передач с промежуточными телами качения, отличающихся тем, что выходная ступень волновой передачи с промежуточными телами качения выполнена с оптимальным передаточным числом, обеспечивающим минимальный наружные диаметр, а требуемый развиваемый момент привода достигнут за счет увеличения числа рядов тел качения, при этом промежуточная ступень волновой передачи с промежуточными телами качения дополнена цилиндрическими парами и расположена соосно оси выходной ступени, продольная ось электродвигателя расположена параллельно этой оси, а цилиндрические пары, осуществляющие кинематическую связь между электродвигателем и входным валом промежуточной ступени, размещены со стороны противоположной выходному валу выходной ступени редуктора, кроме того в выходной и промежуточной ступенях и в выходном колесе цилиндрической пары выполнены цилиндрические отверстия внутри которых расположена ось, соединяющая выходной вал выходной ступни редуктора с ротором датчика обратной связи, размещенном на корпусе редуктора с противоположной стороны от выходного вала выходной ступени.

Техническая сущность и принцип действия привода поясняется на чертежах, на которых изображено:

Фиг. 1. — продольный разрез исполнительного механизма привода

Фиг. 2. — график зависимости наружного диаметра волнового редуктора на основе ВПТК от передаточного числа

Исполнительный механизм привода состоит из пластины 1, на которой торцами с одной стороны крепятся электродвигатель 2 и многоступенчатый редуктор, а с другой датчик обратной связи 3. При этом оси электродвигателя и многоступенчатого редуктора расположены параллельно, а оси датчика обратной связи и многоступенчатого редуктора — соосно.

Выходная и промежуточная ступени редуктора являются волновыми передачами с промежуточными телами качения (ВПТК). Выбор этих передач обусловлен наилучшими массогабаритными показателями по сравнению с другими типами механических передач. При этом если представить расчетный наружный диаметр волновой передачи в виде функции зависящей от передаточного числа, то у данной функции будет существовать локальный минимум в области действительных значений, таким образом реализация на выходной ступени редуктора передаточного числа, лежащего в окрестности минимума, что позволит получить минимальный диаметр передачи. Данная зависимость имеет вид:

где: Мн — максимальный момент нагрузки, q — передаточное число ВПТК, n — количество рядов тел качения (роликов), k — коэффициент, характеризующий допустимое увеличение момента при использовании роликов, D — наружный диаметр жесткого колеса, определяющий диаметр передачи.

Зависимости наружного диаметра ВПТК приведены на фиг. 2. Из приведенных графиков видно, что наименьший наружный диаметр ВПТК при различных расчетных значениях числа рядов тел качения соответствует передаточным числам q лежащим в окрестности значения 9 (8-12). На этом основании для размещения исполнительного механизма привода в требуемом миделе крыла выбирается передаточное число выходной ступени q равное 8-12 при необходимом количестве рядов роликов, например n=4. При этом электродвигатель и промежуточная ступень редуктора выбираются так, что их наружные диаметры не должны превышать наружный диаметр выходной ступени редуктора. При использовании указанных оптимальных размеров элементов исполнительного механизма предлагается компоновка, реализуемая следующим образом.

На валу электродвигателя 2 размещена цилиндрическая шестерня 4, входящая в зацепление с зубчатым колесом 5, которое входит в зацепление с зубчатым колесом 6.

Зубчатое колесо 6 соединено с входным валом входной ступени многоступенчатого волнового редуктора с промежуточными телами качения, первая ступень которого содержит двухволновый дисковый волнообразователь 7, являющийся входным валом, подшипники качения 8, сепаратор 9, в гнездах которого расположены ролики 10.

Сепаратор 9 выполнен единой деталью с входным валом выходной ступени волновой передачи, содержащей эксцентриковые втулки 11 имеющие одинаковый диаметр и эксцентриситет, соединенные резьбовым соединением с входным валом, подшипники 8, сепаратор 12, в гнездах которого расположены ролики 10, и общее для обеих ступеней жесткое колесо 13, являющееся корпусом волнового редуктора соединенным с пластиной 1 с одной стороны и обладающим крепежными отверстиями с другой.

Корпус датчика обратной связи 3 жестко крепится к пластине 1, а его ротор соединяется с выходным звеном через ось 14, проходящую внутри отверстий выполненных в пластине 1, зубчатом колесе 6, волнообразователе 7 и сепараторе 9.

Принцип действия механизма

При подаче напряжения питания на электродвигатель 2, его вал и размещенная на нем шестерня 4 приводятся в движение, которое через цилиндрическую передачу, включающую в себя зубчатые колеса 4, 5, 6 передается на волнообразователь 7, в результате чего ролики 10 совершают возвратно-поступательные движения в гнездах сепаратора 9 и входят в контакт с неподвижным жестким колесом 13, тем самым вынуждая сепаратор 9 совершать вращательное движение. Сепаратор 9 также является механическим волнообразователем для выходной ступени волнового редуктора за счет установленных на нем эксцентриковых втулок 11. При его вращении ролики 10 совершают возвратно-поступательные движения в гнездах сепаратора 12 и входят в контакт с неподвижным жестким колесом 13, тем самым вынуждая сепаратор 12, являющийся выходным звеном, вращаться.

Таким образом, в результате оптимизации параметров выходной ступени редуктора предложенным способом выбор электродвигателя и промежуточных передач наружным диаметром не превышающим диаметр выходной ступени редуктора и размещения электродвигателя, редуктора и датчика обратной связи указанным образом достигнута возможность расширения области применения электромеханических рулевых приводов в более тонких миделях аэродинамических поверхностей без использования обтекателя.

Электромеханический рулевой привод вращательного действия, состоящий из электродвигателя, датчика обратной связи, редуктора, в корпусе которого размещены выходная и промежуточная ступени, реализованные с помощью волновых передач с промежуточными телами качения, отличающийся тем, что выходная ступень волновой передачи с промежуточными телами качения выполнена с оптимальным передаточным числом, обеспечивающим минимальный наружный диаметр, а требуемый развиваемый момент привода достигнут за счет числа рядов тел качения, промежуточная ступень волновой передачи с промежуточными телами качения дополнена цилиндрическими парами, при этом промежуточная ступень расположена соосно оси выходной ступени, продольная ось электродвигателя параллельна этой оси, а цилиндрические пары, осуществляющие кинематическую связь между электродвигателем и входным валом промежуточной ступени, размещены со стороны, противоположной выходному валу выходной ступени редуктора, кроме того, в выходной и промежуточной ступенях и в выходном колесе цилиндрической пары выполнены цилиндрические отверстия, внутри которых расположена ось, соединяющая выходной вал выходной ступени редуктора с ротором датчика обратной связи, размещенного на корпусе редуктора с противоположной стороны от выходного вала выходной ступени.

Оцените статью
Topsamoe.ru
Добавить комментарий