Какие функции выполняют диоды

Дио́д (от др.-греч. δις [1] — два и — от окончания -од термина электрод; букв. «двухэлектродный»; корень -од происходит от др.-греч. ὁδός «путь» [2] ) — электронный элемент, обладающий нелинейной вольт-амперной характеристикой. У большинства диодов различна электрическая проводимость в зависимости от полярности приложенного к диоду напряжения.

Электроды диода носят названия анод и катод. У большинства диодов (электровакуумных диодов, выпрямительных полупроводниковых диодов) при приложении прямого напряжения (то есть анод имеет положительный потенциал относительно катода) диод открыт (через диод течёт прямой ток, диод имеет малое сопротивление). Напротив, если к диоду приложено обратное напряжение (катод имеет положительный потенциал относительно анода), то диод закрыт (сопротивление диода велико, обратный ток мал, и может считаться равным нулю во многих практических случаях).

Содержание
  1. Содержание
  2. История создания и развития диодов [ править | править код ]
  3. Типы диодов [ править | править код ]
  4. Электровакуумные диоды [ править | править код ]
  5. Полупроводниковые диоды [ править | править код ]
  6. Некоторые типы полупроводниковых диодов [ править | править код ]
  7. Основные характеристики и параметры диодов [ править | править код ]
  8. Классификация и система обозначений диодов [ править | править код ]
  9. В СССР [ править | править код ]
  10. В России [ править | править код ]
  11. Зарубежная система обозначений [ править | править код ]
  12. Система EIA/JEDEC [ править | править код ]
  13. Система Pro Electron [ править | править код ]
  14. Другие системы обозначений [ править | править код ]
  15. Графическое изображение на электрических схемах [ править | править код ]
  16. Устройство
  17. Назначение
  18. Прямое включение диода
  19. Обратное включение диода
  20. Прямое и обратное напряжение
  21. Работа диода и его вольт-амперная характеристика
  22. Основные неисправности диодов
  23. Пробой p-n-перехода
  24. Электрический пробой
  25. Тепловой пробой

Содержание

История создания и развития диодов [ править | править код ]

Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в 1873 году британский учёный Ф. Гутри обнаружил, что отрицательно заряженный шар электроскопа при его сильном накаливании теряет заряд, но если его зарядить положительно, то заряд не теряется. Объяснить это явления в то время не могли. Это явление вызвано термоэлектронной эмиссией и затем использовалось в электровакуумных диодах с накаливаемым катодом. Термоэлектронная эмиссия были заново открыта 13 февраля 1880 года Томасом Эдисоном в его опытах по продлению срока службы накаливаемой нити в лампах накаливания, и затем, в 1883 году, запатентовано им (патент США № 307031). Однако Эдисон в дальнейшем его не изучал.

Впервые диод с термоэлектронной эмиссией был запатентован в Британии Джоном Амброзом Флемингом (научным советником компании Маркони и бывшим сотрудником Эдисона) 16 ноября 1904 года (патент США № 803684 от ноября 1905 года).

В 1874 году немецкий учёный Карл Фердинанд Браун открыл выпрямляющие свойства кристаллических диодов, а в 1899 году Браун запатентовал выпрямитель кристаллический выпрямитель [4] . Джэдиш Чандра Боус развил далее открытие Брауна в устройство, применимое для приёма радиоволн. Около 1900 года Гринлиф Пикард создал первый радиоприёмник на кристаллическом диоде. 20 ноября 1906 года Пикард запатентовал кремниевый кристаллический детектор (патент США № 836531).

В конце XIX века устройства подобного рода назывались выпрямителями, и лишь в 1919 году Вильям Генри Иклс ввёл в обиход термин «диод».

Ключевую роль [ источник? ] в разработке первых советских полупроводниковых диодов в 1930-х годах сыграл физик Б. М. Вул.

Типы диодов [ править | править код ]

Диоды бывают электровакуумные (кенотроны), газонаполненные (газотроны, игнитроны, стабилитроны коронного и тлеющего разряда), полупроводниковые и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

Диоды Не полупроводниковые Газозаполненные

Электровакуумные диоды [ править | править код ]

Электровакуумные диоды представляют собой вакуумированный баллон с двумя электродами, один из — катод — подогревается током, получаемым из специальной электрической цепи накала. При накале катода возникает термоэлектронная эмиссия и часть электронов покидает поверхность катода. Если к другому электроду — аноду — приложить положительное относительно катода напряжение, то под действием электрического поля электроны начнут двигаться к аноду создавая ток. Если к аноду приложить отрицательное напряжение, то электроны будут отталкиваться от анода и тока не будет.

Полупроводниковые диоды [ править | править код ]

Полупроводниковый диод состоит либо из полупроводников p-типа и n-типа (полупроводников с разным типом примесной проводимости), либо из полупроводника и металла (диод Шоттки). Контакт между полупроводниками называется p-n переходом и проводит ток в одном направлении (обладает односторонней проводимостью). Некоторые типы полупроводниковых диодов не имеют p-n-перехода, например, диоды Ганна.

Некоторые типы полупроводниковых диодов [ править | править код ]

  • Стабилитрон (диод Зенера) — диод, работающий в режиме обратимого пробоя p-n-перехода при приложении обратного напряжения. Используются для стабилизации напряжения.
  • Туннельный диод (диод Лео Эсаки) — диод, в котором используются квантовомеханические эффекты. На вольт-амперной характеристике имеет область так называемого отрицательного дифференциального сопротивления. Применяются в усилителях, генераторах и пр.
  • Обращённый диод — разновидность туннельного диода, имеющий гораздо более низкое падение напряжения в открытом состоянии, чем обычный диод. Принцип работы такого диода основан на туннельном эффекте.
  • Варикап (диод Джона Джеумма) — диод, обладающий большой ёмкостью при запертом p-n-переходе, зависящей от величины приложенного обратного напряжения. Применяются в качестве конденсаторов переменной ёмкости, управляемых напряжением.
  • Светодиод (диоды Генри Раунда) — диод, отличающийся от обычного диода тем, что при протекции прямого тока излучает фотоны при рекомбинации электронов и дырок в p-n-переходе. Выпускаются светодиоды с излучением в инфракрасном, видимом, а с недавних пор — и в ультрафиолетовом диапазоне.
  • Полупроводниковый лазер — диод, близкий по устройству к светодиоду, но имеющий оптический резонатор. Излучает узкий луч когерентного света.
  • Фотодиод — диод, в котором под действием света появляется значительный обратный ток. Также, под действием света, подобно солнечному элементу, способен генерировать небольшую ЭДС.
  • Солнечный элемент — диод, похожий на фотодиод, но работающий без смещения. Падающий на p-n-переход свет вызывает движение электронов и генерацию тока.
  • Диод Ганна — диод, используемый для генерации и преобразования частоты в СВЧ диапазоне.
  • Диод Шоттки — диод с малым падением напряжения при прямом включении.
  • Лавинный диод — диод, принцип работы которого основан на лавинном пробое (см. обратный участок вольт-амперной характеристики). Применяется для защиты цепей от перенапряжений.
  • Лавинно-пролётный диод — диод, принцип работы которого основан на лавинном умножении носителей заряда. Применяется для генерации колебаний в СВЧ-технике.
  • Магнитодиод — диод, вольт-амперная характеристика которого существенно зависит от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода.
  • Стабистор — диод, имеющий в начале прямой ветви вольт-амперной характеристики участок, позволяющий использовать его для стабилизации небольших напряжений (обычно от 0.5 до 3.0 В). В отличие от стабилитрона, у стабистора это напряжение мало зависит от температуры.
  • Смесительный диод — диод, предназначенный для перемножения двух высокочастотных сигналов.
  • pin-диод — диод, обладающий меньшей ёмкостью за счёт наличия между сильнолегированными полупроводниками p- и n-типов материала, характеризующегося собственной проводимостью. Используется в СВЧ технике, силовой электронике, как фотодетектор.
  • Точечный диод — диод, отличающийся низкой ёмкостьюp-n-перехода и наличием на обратной ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением. Ранее использовались в СВЧ технике (благодаря низкой ёмкости p-n-перехода) и применялись в генераторах и усилителях (благодаря наличию на обратной ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением).

Основные характеристики и параметры диодов [ править | править код ]

Uобр.макс.максимально-допустимое постоянное обратное напряжение диода; Uобр.и.макс.максимально-допустимое импульсное обратное напряжение диода; Iпр.макс.максимальный средний прямой ток за период; Iпр.и.макс.максимальный импульсный прямой ток за период; Iпрг.ток перегрузки выпрямительного диода; fмакс.максимально-допустимая частота переключения диода; fраб.рабочая частота переключения диода; Uпр. при Iпр.постоянное прямое напряжения диода при токе Iпр; Iобр.постоянный обратный ток диода; Тк.макс.максимально-допустимая температура корпуса диода. Тп.макс.максимально-допустимая температура перехода диода.

Классификация и система обозначений диодов [ править | править код ]

Классификация диодов по их назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам, роду исходного материала (полупроводника) отображается системой условных обозначений их типов. Система условных обозначений постоянно совершенствуется в соответствии с возникновением новых классификационных групп и типов диодов. Обычно системы обозначений представлены буквенно-цифровым кодом.

В СССР [ править | править код ]

На территории СССР система условных обозначений неоднократно претерпевала изменения и до настоящего времени на радиорынках можно встретить полупроводниковые диоды, выпущенные на заводах СССР и с системой обозначений согласно отраслевого стандарта ГОСТ 11 336.919-81, базирующегося на ряде классификационных признаков изделий [3] .

  1. Первый элемент буквенно-цифрового кода обозначает исходный материал (полупроводник), на основе которого изготовлен диод, например:
    • Г или 1германий или его соединения;
    • К или 2кремний или его соединения;
    • А или 3 — соединения галлия (например, арсенид галлия);
    • И или 4 — соединения индия (например, фосфид индия);
    • второй элемент — буквенный индекс, определяющий подкласс приборов;
      • Д — для обозначения выпрямительных, импульсных, магнито- и термодиодов;
      • Ц — выпрямительных столбов и блоков;
      • В — варикапов;
      • И — туннельных диодов;
      • А — сверхвысокочастотных диодов;
      • С — стабилитронов, в том числе стабисторов и ограничителей;
      • Л — излучающие оптоэлектронные приборы;
      • О — оптопары;
      • Н — диодные тиристоры;
      • третий элемент — цифра (или в случае оптопар — буква), определяющая один из основных признаков прибора (параметр, назначение или принцип действия);
      • четвёртый элемент — число, обозначающее порядковый номер разработки технологического типа изделия;
      • пятый элемент — буквенный индекс, условно определяющий классификацию по параметрам диодов, изготовленных по единой технологии.

      Например: КД212Б, ГД508А, КЦ405Ж.

      Кроме того, система обозначений предусматривает (в случае необходимости) введение в обозначение дополнительных знаков для выделения отдельных существенных конструктивно-технологических особенностей изделий.

      В России [ править | править код ]

      Продолжает действовать ГОСТ 2.730-73 — «Приборы полупроводниковые. Условные обозначения графические» [5]

      Зарубежная система обозначений [ править | править код ]

      Существует ряд общих принципов стандартизации системы кодирования для диодов за рубежом. Наиболее распространены стандарты EIA/JEDEC и европейский «Pro Electron».

      Система EIA/JEDEC [ править | править код ]

      Стандартизированная система EIA370 нумерации 1N-серии была введена в США EIA/JEDEC (Объединённый инженерный консилиум по электронным устройствам) приблизительно в 1960 году. Среди самого популярного в этой серии были: 1N34A/1N270 (германиевый), 1N914/1N4148 (кремниевый), 1N4001—1N4007 (кремниевый выпрямитель 1A) и 1N54xx (мощный кремниевый выпрямитель 3A) [6] [7] [8] .

      Система Pro Electron [ править | править код ]

      Согласно европейской системе обозначений активных компонентов Pro Electron, введённой в 1966 году и состоящей из двух букв и числового кода:

      1. первая буква обозначает материал полупроводника:
        • AGermanium (германий) или его соединения;
        • BSilicium (кремний) или его соединения;
        • вторая буква обозначает подкласс приборов:
          • A — сверхвысокочастотные диоды;
          • B — варикапы;
          • X — умножители напряжения;
          • Y — выпрямительные диоды;
          • Z — стабилитроны, например:
          • AA-серия — германиевые сверхвысокочастотные диоды (например, AA119);
          • BA-серия — кремниевые сверхвысокочастотные диоды (например: BAT18 — диодный переключатель)
          • BY-серия — кремниевые выпрямительные диоды (например: BY127 — выпрямительный диод 1250V, 1А);
          • BZ-серия — кремниевые стабилитроны (например, BZY88C4V7 — стабилитрон 4,7V).

          Другие системы обозначений [ править | править код ]

          Другие распространённые системы нумерации/кодирования (обычно производителем) включают:

          • GD-серия германиевых диодов (например, GD9) — это очень старая система кодирования;
          • OA-серия германиевых диодов (например, OA47) — кодирующие последовательности разработаны британской компанией Mullard.

          Система JIS маркирует полупроводниковые диоды, начиная с «1S».

          Кроме того, многие производители или организации имеют свои собственные системы общей кодировки, например:

          • HP диод 1901-0044 = JEDEC 1N4148
          • Военный диод CV448 (Великобритания) = Mullard типа OA81 = GEC типа GEX23

          Графическое изображение на электрических схемах [ править | править код ]

          Графические символы различных типов диодов используемые на электрических схемах в соответствии с их функциональным назначением. треугольник указывает направление тока от анода к катоду (прямая проводимость).

          Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

          Принцип работы:

          1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
          2. Между двумя электродами происходит образование электрического поля.
          3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
          4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
          5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
          6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

          Устройство

          Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

          1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
          2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
          3. Внутри катодакосвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
          4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
          5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
          6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

          Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

          Назначение

          Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

          1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
          2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
          3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
          4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
          5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

          Прямое включение диода

          На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

          Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

          1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
          2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
          3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
          4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
          5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
          6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
          7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

          Обратное включение диода

          Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

          1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
          2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
          3. По мере ростаобратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
          4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

          Прямое и обратное напряжение

          Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

          1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
          2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

          Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

          Работа диода и его вольт-амперная характеристика

          Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

          Подобный график можно описать следующим образом:

          1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
          2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
          3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
          4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
          5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
          6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
          7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

          Основные неисправности диодов

          Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

          Всего выделяют 3 основных типа распространенных неисправностей:

          1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
          2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
          3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

          Пробой p-n-перехода

          Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

          Обычно различается несколько видов:

          1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
          2. Электрические пробои, возникающие под воздействием тока на переход.

          График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

          Электрический пробой

          Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

          При этом, пробои такого типа делятся на две разновидности:

          1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
          2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

          Тепловой пробой

          Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

          Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

          1. Рост колебания атомов, входящих в состав кристалла.
          2. Попадание электронов в проводимую зону.
          3. Резкое повышение температуры.
          4. Разрушение и деформация структуры кристалла.
          5. Полный выход из строя и поломка всего радиокомпонента.

          Каждый вопрос экзамена может иметь несколько ответов от разных авторов. Ответ может содержать текст, формулы, картинки. Удалить или редактировать вопрос может автор экзамена или автор ответа на экзамен.

          Дио́д — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом.

          Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

          Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом (Диод Шоттки).

          Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается нитью накала. Благодаря этому, часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду — аноду. Если же поле направлено в противоположную сторону, электрическое поле препятствует этим электронам и тока (практически) нет.

          Специальные типы диодов

          • Стабилитроны (диод Зенера). Используют обратную ветвь характеристики диода с обратимым пробоем для стабилизации напряжения.
          • Туннельные диоды (диоды Лео Эсаки). Диоды, существенно использующие квантовомеханические эффекты. Имеют область т. н. «отрицательного сопротивления» на вольт-амперной характеристике. Применяются как усилители, генераторы и пр.
          • Варикапы(диоды Джона Джеумма). Используется то, что запертый p—n-переход обладает большой ёмкостью, причём ёмкость зависит от приложенного обратного напряжения. Применяются в качестве конденсаторов переменной ёмкости.
          • Светодиоды (диоды Генри Раунда). В отличие от обычных диодов, при рекомбинации электронов и дырок в переходе излучают свет в видимом диапазоне, а не в инфракрасном. Однако, выпускаются светодиоды и с излучением в ИК диапазоне, а с недавних пор — и в УФ.
          • Полупроводниковые лазеры. По устройству близки к светодиодам, однако имеют оптический резонатор, излучают когерентный свет.
          • Фотодиоды. Запертый фотодиод открывается под действием света.
          • Солнечный элемент. Подобен фотодиоду, но работает без смещения. Падающий на p-n переход свет вызывает движение электронов и генерацию тока.
          • Диоды Ганна. Используются для генерации и преобразования частоты в СВЧ диапазоне.
          • Диод Шоттки. Диод с малым падением напряжения при прямом включении.
          • Лавинный диод — диод, основанный на лавинном пробое обратного участка вольт-амперной характеристики. Применяется для защиты цепей от перенапряжений
          • Лавинно-пролётный диод — диод, основанный на лавинном умножении носителей заряда. Применяется для генерации колебаний в СВЧ-технике.
          • Магнитодиод. Диод, вольт-амперная характеристика которого существенно зависит от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода.
          • Стабисторы. При работе используется участок ветви вольт-амперной характеристики, соответствующий «прямому напряжению» на диоде.
          • Смесительный диод — предназначен для перемножения двух высокочастотных сигналов.
          • pin диод — содержит область собственной проводимости между сильнолегированными областями. Используется в СВЧ-технике, силовой электронике, как фотодетектор.

          Диоды широко используются для преобразования переменного тока в постоянный. Диодный выпрямитель или диодный мост (То есть 4 диода для однофазной схемы, 6 для трёхфазной полумостовой схемы или 12 для трёхфазной полномостовой схемы, соединённых между собой по схеме) — основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме Ларионова А. Н. на трёх параллельных полумостах применяется в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.

          В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той особенностью данных выпрямителей, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определенной степени) ни к потере выпрямительных свойств, ни к короткому замыканию — пробою

          Диодные детекторы

          Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диодные детекторы применяются в радиоприёмных устройствах: радиоприёмниках, телевизорах и т.п. Используется квадратичный участок вольт-амперной характеристики диода.

          Диоды применяются также для защиты разных устройств от неправильной полярности включения и т. п.Известна схема диодной защиты схем постоянного тока с индуктивностями от скачков при выключении питания. Диод включается параллельно катушке так, что в «рабочем» состоянии диод закрыт. В таком случае, если резко выключить сборку, возникнет ток через диод и сила тока будет уменьшаться медленно (ЭДС индукции будет равна падению напряжения на диоде), и не возникнет мощного скачка напряжения, приводящего к искрящим контактам и выгорающим полупроводникам.

          Применяются для коммутации высокочастотных сигналов. Управление осуществляется постоянным током, разделение ВЧ и управляющего сигнала с помощью конденсаторов и индуктивностей.

          Этим не исчерпывается применение диодов в электронике, однако другие схемы, как правило, весьма узкоспециальны. Совершенно другую область применимости имеют специальные диоды, поэтому они будут рассмотрены в отдельных статьях.

          Оцените статью
          Topsamoe.ru
          Добавить комментарий