Как определяется напряжение на участке электрической цепи

Немецкий физик Георг Симон Ом (1787—1854) открыл основной закон электрической цепи.

Закон Ома для участка цепи:

Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

  1. I — сила тока (в системе СИ измеряется — Ампер)
    • Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
    • Формула: I=frac
    • U — напряжение (в системе СИ измеряется — Вольт)

      Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.

      Формула: U=IR

    • R— электрическое сопротивление (в системе СИ измеряется — Ом).
      • Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
      • Формула R=frac
      • Определение единицы сопротивления — Ом

        1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1(Вольт) протекает ток 1 (Ампер).

        Закон Ома для полной цепи

        Определение: Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника

        Формула I=frac <varepsilon>

        • varepsilon — ЭДС источника напряжения, В;
        • I — сила тока в цепи, А;
        • R — сопротивление всех внешних элементов цепи, Ом;
        • r — внутреннее сопротивление источника напряжения, Ом.

        Как запомнить формулы закона Ома

        Треугольник Ома поможет запомнить закон. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления.

        .

        • U — электрическое напряжение;
        • I — сила тока;
        • P — электрическая мощность;
        • R — электрическое сопротивление

        Смотри также:

        Для закрепления своих знаний решай задания и варианты ЕГЭ по физике с ответами и пояснениями.

        Основным законом электротехники, при помощи которого можно изучать и рассчитывать электрические цепи, является закон Ома, устанавливающий соотношение между током, напряжением и сопротивлением. Необходимо отчетливо понимать его сущность и уметь правильно пользоваться им при решении практических задач. Часто в электротехнике допускаются ошибки из-за неумения правильно применить закон Ома.

        Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

        Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.

        В популярной форме этот закон можно сформулировать следующим образом: чем выше напряжение при одном и том же сопротивлении, тем выше сила тока и в то же время чем выше сопротивление при одном и том же напряжении, тем ниже сила тока.

        Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

        Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:

        Любой участок или элемент электрической цепи можно охарактеризовать при помощи трёх характеристик: тока, напряжения и сопротивления.

        Как использовать треугольник Ома: закрываем искомую величину – два других символа дадут формулу для её вычисления. Кстати, законом Ома называется только одна формула из треугольника – та, которая отражает зависимость тока от напряжения и сопротивления. Две другие формулы, хотя и являются её следствием, физического смысла не имеют.

        Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

        Читайте также:  Назовите основные машиностроительные районы россии на производстве

        Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление — в килоомах и мегаомах соответственно.

        Другие статьи про электричество в простом и доступном изложении:

        Закон Ома справедлив для любого участка цепи. Если требуется определить ток в данном участке цепи, то необходимо напряжение, действующее на этом участке (рис. 1), разделить на сопротивление именно этого участка.

        Рис 1. Применение закона Ома для участка цепи

        Приведем пример расчета тока по закону Ома . Пусть требуется определить ток в лампе, имеющей сопротивление 2,5 Ом, если напряжение, приложенное к лампе, составляет 5 В. Разделив 5 В на 2,5 Ом, получим значение тока, равное 2 А. Во втором примере определим ток, который будет протекать под действием напряжения 500 В в цепи, сопротивление которой равно 0,5 МОм. Для этого выразим сопротивление в омах. Разделив 500 В на 500 000 Ом, найдем значение тока в цепи, которое равно 0,001 А или 1 мА.

        Часто, зная ток и сопротивление, определяют с помощью закона Ома напряжение. Запишем формулу для определения напряжения

        Из этой формулы видно, что напряжение на концах данного участка цепи прямо пропорционально току и сопротивлению . Смысл этой зависимости понять нетрудно. Если не изменять сопротивление участка цепи, то увеличить ток можно только путем увеличения напряжения. Значит при постоянном сопротивлении большему току соответствует большее напряжение. Если же надо получить один и тот же ток при различных сопротивлениях, то при большем сопротивлении должно быть соответственно большее напряжение.

        Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны. Потери и падение напряжения – в чем различие?

        Расчет напряжения с помощью закона Ома можно показать на следующем примере. Пусть через участок цепи с сопротивлением 10 кОм проходит ток 5 мА и требуется определить напряжение на этом участке.

        Умножив I = 0,005 А на R —10 000 Ом, получим напряжение,равное 5 0 В. Можно было бы получить тот же результат, умножив 5 мА на 10 кОм: U = 50 В

        В электронных устройствах ток обычно выражается в миллиамперах, а сопротивление — в килоомах. Поэтому удобно в расчетах по закону Ома применять именно эти единицы измерений.

        По закону Ома рассчитывается также сопротивление, если известно напряжение и ток. Формула для этого случая пишется следующим образом: R = U/I.

        Сопротивление всегда представляет собой отношение напряжения к току. Если напряжение увеличить или уменьшить в несколько раз, то ток увеличится или уменьшится в такое же число раз. Отношение напряжения к току, равное сопротивлению, остается неизменным.

        Не следует понимать формулу для определения сопротивления в том смысле, что сопротивление данного проводника зависит оттока и напряжения. Известно, что оно зависит от длины, площади сечения и материала проводника. По внешнему виду формула для определения сопротивления напоминает формулу для расчета тока, но между ними имеется принципиальная разница.

        Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.

        Когда один и тот же ток проходит в двух участках цепи, а напряжения, приложенные к ним, различны, то ясно, что участок, к которому приложено большее напряжение, имеет соответственно большее сопротивление.

        А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.

        Читайте также:  Как обслуживать инсталляцию для унитаза

        Расчет сопротивления с помощью закона Ома для участка цепи покажем на следующем примере. Пусть требуется найти сопротивление участка, через который при напряжении 40 В проходит ток 50 мА. Выразив ток в амперах, получим I = 0,05 А. Разделим 40 на 0,05 и найдем, что сопротивление составляет 800 Ом.

        Закон Ома можно наглядно представить в виде так называемой вольт-амперной характеристики . Как известно, прямая пропорциональная зависимость между двумя величинами представляет собой прямую линию, проходящую через начало координат. Такую зависимость принято называть линейной .

        На рис. 2 показан в качестве примера график закона Ома для участка цепи с сопротивлением 100 Ом. По горизонтальной оси отложено напряжение в вольтах, а по вертикальной оси — ток в амперах. Масштаб тока и напряжения может быть выбран каким угодно. Прямая линия проведена так, что для любой ее точки отношение напряжения к току равно 100 Ом. Например, если U = 50 В, то I = 0,5 А и R = 50 : 0,5 = 100 Ом.

        Рис. 2 . Закон Ома (вольт-амперная характеристика)

        График закона Ома для отрицательных значений тока и напряжения имеет такой же вид. Это говорит о том, что ток в цепи проходит одинаково в обоих направлениях. Чем больше сопротивление, тем меньше получается ток при данном напряжении и тем более полого идет прямая.

        Приборы, у которых вольт-амперная характеристика является прямой линией, проходящей через начало координат, т. е. сопротивление остается постоянным при изменении напряжения или тока, называются линейными приборами . Применяют также термины линейные цепи, линейные сопротивления.

        Существуют также приборы, у которых сопротивление изменяется при изменении напряжения или тока. Тогда зависимость между током и напряжением выражается не по закону Ома, а более сложно. Для таких приборов вольт-амперная характеристика не будет прямой линией, проходящей через начало координат, а является либо кривой, либо ломаной линией. Эти приборы называются нелинейными .

        Участок электрической цепи, по которому проходит ток одного и того же значения называют ветвью .

        Место соединения трех и более ветвей называют узлом .

        Замкнутую электрическую цепь, образованную одной или несколькими ветвями называют контуром .

        Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка.

        На рис. 2.1 изображен участок цепи, содержащий только резистивный элемент, крайние точки которого обозначены буквами a и b. Пусть ток направлен от точки a к точке b (от более высокого потенциала к более низкому).

        Следовательно, потенциал точки а () выше потенциала точки b () на значение, равное произведению тока на сопротивление R:

        .

        В соответствии с определением напряжение между точками а и b

        .

        т. е. напряжение на сопротивлении равно произведению тока, протекающего по резистивному элементу, на значение его сопротивления. Последнее выражение называют законом Ома для участка цепи.

        В электротехнике разность потенциалов на концах резистивного элемента (сопротивления) называют либо напряжением на сопротивлении, либо падением напряжения. Положительное направление падения напряжения на каком-либо участке (направление отсчета этого напряжения), указываемое на рисунках стрелкой, совпадает с положительным направлением отсчета тока, протекающего по данному сопротивлению.

        Рассмотрим вопрос о напряжении на участке цепи, содержащем не только резистивный элемент, но и ЭДС. На рис. 2.2 показан участок цепи, в которой существует ток . Найдем разность потенциалов (напряжение) между точками a и c для этих участков. По определению,

        .

        Выразим потенциал точки а через потенциал точки f. При перемещении от точки f к точке d встречно направлению ЭДС источника Е2 (рис. 2.2) потенциал точки d оказывается ниже (меньше), чем потенциал точки f, на значение ЭДС источника Е2. При перемещении от точки d к точке c согласно направлению ЭДС источника Е1 (рис. 2.2) потенциал точки c оказывается выше (больше), чем потенциал точки d, на значение ЭДС источника Е1. При перемещении от точки c к точке b и далее к точке a потенциал точки a оказывается выше (больше) на величину падения напряжения на резисторах R2 и R1, соответственно, т.е.

        .

        Таким образом с учетом вышеизложенного:

        ,

        напряжение на участке цепи между точками a и f равно:

        Читайте также:  Как перепрограммировать замок в двери ключом

        В общем случае напряжение на участке цепи равно сумме падений напряжения на резистивных элементах цепи и сумме ЭДС источников.

        Положительное направление напряжения показывают стрелкой от а к f. Согласно определению , поэтому т.е. изменение чередования (последовательности) индексов равносильно изменению знака этого напряжения.

        Законы Кирхгофа

        Первый закон Кирхгофа (уравнение электрического состояния для узла) можно сформулировать двояко:

        1) алгебраическая сумма токов, входящих в любой узел схемы (рис.2.3,а), равна нулю:

        2) сумма токов, входящих в любой узел схемы (рис.2.3,б), равна сумме токов выходящих из этого узла:

        Физически первый закон Кирхгофа означает, что движение зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются.

        Второй закон Кирхгофа (уравнение электрического состояния контура) также можно сформулировать двояко:

        1) алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:

        (в каждую из сумм соответствующие слагаемые входят со знаком плюс, если они совпадают с направлением обхода контура, и со знаком минус, если они не совпадают с ним);

        2) алгебраическая сумма напряжений (не падений напряжения!) вдоль любого замкнутого контура равна нулю:

        Напряжения участков цепи включают и падения напряжения на резистивных элементах и напряжения на источниках ЭДС.

        Для левого контура схемы рис.2.4

        .

        Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

        Параллельное и последовательное соединение двухполюсников

        Последовательное соединение резистивных элементов

        Результирующее падение напряжения на цепи (рис. 2.5) из n последовательно включенных резистивных элементов:

        .

        В цепи существует общий ток .

        Для линейных резистивных элементов:

        ,

        где эквивалентное сопротивление цепи из n последовательно соединенных резистивных элементов:

        .

        Для нелинейных резистивных элементов НЭ1 и НЭ2 результирующая ВАХ эквивалентного резистивного элемента определяется графическим способом (рис. 2.6).

        В интересующем диапазоне токов (соответствующем участку ВАХ нелинейного элемента) задаются несколькими значениями токов (). Для каждого из выбранных значений тока, например , определяют результирующее напряжение на последовательно включенных элементах:

        .

        На уровне каждой из ординат откладывают найденные значения абсцисс . Результирующую ВАХ получают, проводя линию через найденные точки.

        Параллельное соединение резистивных элементов

        При параллельном соединении двухполюсных элементов (рис. 2.7) на их полюсах будет общее падение напряжения .

        Общий ток , для n параллельно включенных двухполюсных элементов

        .

        Для линейных двухполюсных элементов ток через k-тый резистивный элемент , где – проводимость k-того резистивного элемента. Таким образом общий ток

        ,

        где эквивалентная проводимость равна сумме проводимости параллельно включенных двухполюсных элементов.

        В частном случае для двух элементов эквивалентная проводимость , или эквивалентное сопротивление

        .

        Для нелинейных резистивных элементов НЭ1 и НЭ2 результирующая ВАХ эквивалентного резистивного элемента определяется графическим способом (рис. 2.8).

        В интересующем диапазоне напряжений (соответствующем участку ВАХ нелинейного элемента) задаются несколькими значениями напряжений (). Для каждого из выбранных значений напряжения, например , определяют результирующий (суммарный) ток через параллельно включенные элементы:

        .

        На уровне каждой из абсцисс откладывают найденные значения ординат . Результирующую ВАХ получают проводя линию через найденные точки.

        Последовательное и параллельное соединение линейных индуктивных элементов

        При последовательном соединении n линейных индуктивных элементов их результирующая индуктивность определяется

        .

        При параллельном соединении n линейных индуктивных элементов их результирующая индуктивность определяется

        , или .

        Последовательное и параллельное соединение линейных емкостных элементов

        При последовательном соединении n линейных емкостных элементов их результирующая емкость определяется

        , или .

        При параллельном соединении n линейных емкостных элементов их результирующая емкость определяется

        Не нашли то, что искали? Воспользуйтесь поиском:

        Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9398 – | 7310 – или читать все.

        91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

        Отключите adBlock!
        и обновите страницу (F5)

        очень нужно

        Добавить комментарий

        Ваш адрес email не будет опубликован. Обязательные поля помечены *

        Adblock detector