Формула зависимости сопротивления от свойств проводника

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Сопротивление обозначается латинскими буквами R или r.

За единицу электрического сопротивления принят Ом.

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита ρ. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника:

где – R – сопротивление проводника, ом, l – длина в проводника в м, S – площадь поперечного сечения проводника, мм 2 .

Еще одной причиной, влияющей на сопротивление проводников, являетсятемпература.

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов.

ЭДС источника тока. Закон Ома для полной цепи с ЭДС.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника(ЭДС):

Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Сопротивление r неоднородного участка можно рассматривать как внутреннее сопротивление источника тока.

63. Соединение проводников.

Проводники в электрических цепях могут соединяться последовательно и параллельно.

При последовательном соединении проводников сила тока во всех проводниках одинакова:

I1 = I2 = I.

По закону Ома, напряжения U1 и U2 на проводниках равны

U1 = IR1, U2 = IR2.

Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:

U = U1 + U2 = I(R1 + R2) = IR,

где R – электрическое сопротивление всей цепи. Отсюда следует:

R = R1 + R2.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук – маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Читайте также:  Томаты с мелкими листьями

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Сопротивление различных проводников зависит от материала, из которого они изготовлены.

Можно проверить это практически на следующем опыте.

Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника

Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.

Из этого следует, что сопротивление медного проводника меньше , чем стального, а сопротивление стального проводника меньше , чем никелинового.

Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.

Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.

Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм 2 при температуре +20 С°.

Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.

Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм 2 /м, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,0175 Ом.

Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.

Удельные сопротивления материалов, наиболее часто применяемых в электротехнике

Материал
Удельное сопротивление, Ом*мм 2 /м
Серебро 0,016
Медь 0,0175
Алюминий 0,0295
Железо 0,09-0,11
Сталь 0,125-0,146
Свинец 0,218-0,222
Константан 0,4-0,51
Манганин 0,4-0,52
Никелин 0,43
Вольфрам 0,503
Нихром 1,02-1,12
Фехраль 1,2
Уголь 10-60

Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).

Разберем теперь, как влияют размеры проводника , т. е. длина и поперечное сечение, на величину его сопротивления.

Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина. Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2). Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.

Читайте также:  Как посадить дельфиниум семенами осенью

Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника

Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.

Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..

Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.

Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.

Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.

Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.

Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой

Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:

электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения..

Математически эта зависимость выражается следующей формулой:

где R—сопротивление проводника в Ом;

ρ — удельное сопротивление материала в Ом*мм 2 /м;

l — длина проводника в м;

S—площадь поперечного сечения проводника в мм 2 .

Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле

Читайте также:  Как настроить цифровые каналы на плазме

где π —постоянная величина, равная 3,14;

Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.

Так, например, длина проводника определяется по формуле:

Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:

Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти материал, обладающий таким удельным сопротивлением.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Ø Зависимость сопротивления проводника от длины, площади поперечного сечения и материала.

Ø Зависимость сопротивления проводника от температуры.

Зависимость сопротивления проводника от длины, площади поперечного сечения и материала.

На основании опытов было установлено, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально его поперечному сечению

Где р — коэффициент пропорциональности, или Удельное сопротивление проводника, I — длина проводника, S — поперечное сечение проводника.

Удельным сопротивлением Является сопротивление проводника из данного вещества единичной длины и единичного поперечного сечения. Удельное сопротивление проводника зависит от материала проводника.

В СИ единица измерения удельного сопротивления

Зависимость сопротивления проводника от температуры

Сопротивление проводников зависит от температуры. Величина, характеризующая зависимость изменения сопротивления проводника от температуры, называется Температурным коэффициентом сопротивления И обозначается А. Температурный коэффициент сопротивления показывает, на какую часть первоначального сопротивления изменяется сопротивление этого проводника при нагревании от 0° С до Г С, то есть

Из этой формулы можно получить единицы измерения температурного коэффициента сопротивления

Проделав соответствующие преобразования, получим

Сопротивление всех металлов при нагревании возрастает, их температурные коэффициенты сопротивления положительны. Сопротивление растворов солей, кислот, щелочей, а также угля при нагревании уменьшается, их температурные коэффициенты отрицательны, для них формулу зависимости сопротивления от температуры можно записать так:

В формуле (1), заменив

Получим общую формулу сопротивления

Где р0 — удельное сопротивление проводника при 0° С. Если в формуле (2) заменить

Где Pt — удельное сопротивление проводника при температуре t° С.

Сверхпроводимость.

С приближением температуры чистых металлов к абсолютному нулю их сопротивление резким скачком падает до нуля (рис. 77).

Ток, идущий по замкнутому проводнику, при температурах, близких к абсолютному нулю, может циркулировать в нем достаточно долгое время. Такое явление называется Сверхпроводимостью.

“>

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector