Блок питания для домашней лаборатории

Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов. В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А – минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом – ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие – раньше ограничить ток.

Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге – смотрите далее:

Отдельная благодарность за улучшение схемы – Rentern. Сборка, корпус, испытания – aledim.

Обсудить статью ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Схема усовершенствованного зарядного устройства для аккумуляторов малой и средней мощности.

УСИЛИТЕЛЬ ДЛЯ FM МОДУЛЯТОРА

Принципиальная схема усилителя мощности ВЧ сигнала для ФМ модуляторов.

МЕТАЛЛИЧЕСКАЯ ШТАНГА ДЛЯ МЕТАЛЛОИСКАТЕЛЯ

Подробная технология изготовления стальной штанги для металлодетектора – чертежи и фотографии.

МИНИ ВЕРСТАК ДЛЯ ДОМА

Мини верстак радиолюбителя своими руками. Удобное приспособление для работы в ограниченном пространстве квартиры.

В плане всего, что было сказано выше, наиболее разумным и наименее затратным представляется изготовление трансформаторного блока питания. Подходящий готовый трансформатор для питания полупроводниковых конструкций можно подобрать от старых магнитофонов, ламповых телевизоров, трехпрограммных громкоговорителей и другой техники выходящей из употребления. Готовые сетевые трансформаторы продаются на радио рынках и в интернет магазинах. Всегда можно найти подходящий вариант.

Внешне трансформатор представляет собой Ш-образный сердечник из листов специальной трансформаторной стали. На сердечнике находится пластиковый или картонный каркас, на котором расположены обмотки. Пластины, как правило, покрыты лаком, чтобы между ними не было электрического контакта. Таким образом борются с вихревыми токами или токами Фуко. Эти токи просто греют сердечник, это просто потери.

Для этих же целей трансформаторное железо сделано из крупных кристаллов, которые также изолированы друг от друга окисными пленками. На трансформаторном железе очень больших размеров эти кристаллы видны невооруженным глазом. Если такое железо резать кровельными ножницами, то срез напоминает полотно ножовки по металлу, содержит мелкие зубчики.

Трансформатор в блоке питания выполняет сразу две функции. Во- первых, это понижение сетевого напряжения до нужного уровня. Во-вторых, это обеспечение гальванической развязки от питающей сети: первичная и вторичная обмотки между собой не соединены, электрическое сопротивление в идеале бесконечно. Связь первичной и вторичной обмотки осуществляется через переменное магнитное поле сердечника, создаваемое первичной обмоткой.

Упрощенный расчет трансформатора

При покупке или самостоятельной намотке трансформатора следует руководствоваться следующими параметрами, которые выражаются всего четырьмя формулами.

Первую из них можно назвать законом трансформации.

U1/U2 = n1/n2 (1),

Простой пример. Поскольку речь идет именно о сетевом трансформаторе, то напряжение на первичной обмотке будет всегда 220В. Предположим, что первичная обмотка содержит 220 витков, а вторичная 22 витка. Это достаточно большой трансформатор, поэтому витков в расчете на один вольт у него немного.

Если на первичную обмотку подать напряжение 220В, то на вторичной обмотке получится 22В, что полностью соответствует коэффициенту трансформации n1/n2, который в нашем примере равен 10. Предположим, что во вторичную обмотку включена нагрузка, потребляющая ток ровно 1А. Тогда ток первичной обмотки составит 0,1А, поскольку токи находятся в обратном соотношении.

Мощность потребляемая обмотками: для вторичной 22В*1А = 22Вт, а для первичной 220В * 0,1А = 22Вт. Такой расчет показывает, что мощности первичной и вторичной обмоток равны. Если вторичных обмоток несколько, то при расчете их мощности следует сложить, это и будет мощность первичной обмотки.

Из этой же формулы следует, что определить количество витков на один вольт очень просто: достаточно намотать пробную обмотку, например, 10 витков, померить на ней напряжение, полученный результат разделить на 10. Число витков на вольт очень поможет, когда потребуется намотать обмотку на нужное напряжение. Следует заметить, что обмотки надо мотать с некоторым запасом, с учетом «просаживания» напряжения на самих обмотках и на регулирующих элементах стабилизаторов. Если минимальное напряжение требуется 12В, то обмотка может быть рассчитана на 17…18В. Это же правило следует соблюдать и при покупке готового трансформатора.

Общая мощность трансформатора подсчитывается как сумма мощностей всех вторичных обмоток, о чем было написано чуть выше. Исходя из этого подсчета, можно выбрать подходящий сердечник, точнее сказать его площадь. Формула для выбора площади сердечника:.

Здесь S площадь сердечника в квадратных сантиметрах, а P общая мощность нагрузки в ваттах. Для Ш-образного сердечника площадью является сечение центрального стержня, на котором расположены обмотки, а для тороидального поперечное сечение тора. Исходя из рассчитанной площади сердечника, можно выбрать подходящее трансформаторное железо.

Расчетное значение следует округлять до ближайшего большего стандартного значения. Все остальные расчетные величины в процессе расчета также округляются в сторону увеличения. Если, предположим, мощность получилась 37,5 Вт, то округляется до 40Вт.

После того, как стала известна площадь сердечника, можно рассчитать число витков в первичной обмотке. Это третья расчетная формула.

Здесь n1 – число витков первичной обмотки, U1 – 220В – напряжение первичной обмотки, S площадь сердечника в квадратных сантиметрах. Особого внимания заслуживает эмпирический коэффициент 50, который может изменяться в некоторых пределах.

Если требуется, чтобы трансформатор не входил в насыщение, не создавал лишних электромагнитных помех (особенно актуально для звуковоспроизводящей аппаратуры), этот коэффициент можно увеличить до 60. В этом случае количество витков в обмотках увеличится, режим работы трансформатора будет облегчен, сердечник уже не сможет войти в насыщение. Главное, чтобы уместились все обмотки.

После того, как определена мощность трансформатора, подсчитаны витки и токи в обмотках, самое время определить сечение провода обмоток. Предполагается, что обмотки намотаны медным проводом. Этот расчет поможет выполнить формула:

Здесь di мм, Ii А соответственно диаметр провода и ток i-ой обмотки. Полученный по расчету диаметр провода также следует округлить до ближайшего большего стандартного значения.

Вот собственно и весь упрощенный расчет сетевого трансформатора, для практических целей даже очень достаточный. Следует, однако, заметить, что этот расчет справедлив только для сетевых трансформаторов, работающих на частоте 50Гц. Для трансформаторов, выполненных на ферритовых сердечниках и работающих на высокой частоте, расчет производится совсем по другим формулам, кроме разве что коэффициента трансформации по формуле 1.

Читайте также:  Сколько отапливает одна секция биметаллического радиатора

После того, как трансформатор рассчитан, намотан или просто куплен нужного типоразмера, можно приступить к изготовлению блока питания, без которого не обходится ни одна схема.

Нестабилизированные блоки питания

Самые простые по схемотехнике это нестабилизированные блоки питания. Применяются они достаточно часто в различных конструкциях, что упрощает схему, не оказывая влияния на ее функциональность. Например, мощные усилители звуковой частоты чаще всего питаются от нестабилизированного источника, поскольку заметить на слух что напряжение питания изменилось на 2…3 вольта практически невозможно. Также нет никакой разницы, при каком напряжении сработает реле: лишь бы сработало, и в дальнейшем не сгорело.

Нестабилизированные блоки питания устроены просто, схема показана на рисунке 1.

К вторичной обмотке трансформатора подключен выпрямительный мост на диодах. Хотя схем выпрямителей существует достаточно много, мостовая схема является самой распространенной. На выходе моста получается пульсирующее напряжение с удвоенной частотой сети, что характерно для всех схем двухполупериодных выпрямителей (рисунок 2, кривая 1).

Естественно, что такое пульсирующее напряжение для питания транзисторных схем непригодно: представьте себе, как будет реветь усилитель при таком питании! Чтобы сгладить пульсации до приемлемого значения, на выходе выпрямителя устанавливаются фильтры (рисунок 2, кривая 2). В простейшем случае это может быть просто электролитический конденсатор большой емкости. Сказанное иллюстрируется на рисунке 2.

Расчет емкости этого конденсатора достаточно сложен, поэтому можно рекомендовать проверенные на практике величины: на каждый ампер тока в нагрузке требуется емкость конденсатора 1000…2000 мкФ. Меньшее значение емкости справедливо для случая, когда после выпрямительного моста предполагается использовать стабилизатор напряжения.

По мере увеличения емкости конденсатора пульсации (рисунок 2, кривая 2) будут уменьшаться, но совсем не пропадут. Если пульсации недопустимы, приходится вводить в схему блока питания стабилизаторы напряжения.

Двухполярный источник питания

В случае, когда от источника требуется получить двухполярное напряжение, схему придется несколько изменить. Мост останется все тот же, но вторичная обмотка трансформатора должна иметь среднюю точку. Сглаживающих конденсаторов станет уже два, каждый для своей полярности. Такая схема показана на рисунке 3.

Соединение вторичных обмоток должно быть последовательно – согласным , – начало обмотки III соединено с концом обмотки II. Точками отмечаются, как правило, начала обмоток. Если трансформатор промышленного изготовления и все выводы пронумерованы, то можно придерживаться такого правила: все нечетные номера выводов это начала обмоток, соответственно четные – концы. То есть при последовательном соединении надо соединять четный вывод одной обмотки с нечетным выводом другой. Естественно, что ни в коем случае нельзя соединять накоротко выводы одной обмотки, например, 1 и 2.

Стабилизированные блоки питания

Но достаточно часто без стабилизаторов напряжения просто не обойтись. Самым простейшим является параметрический стабилизатор, который содержит всего три детали. После стабилитрона устанавливается электролитический конденсатор, назначение которого сглаживание остаточных пульсаций. Его схема показана на рисунке 4.

Вообще, этот конденсатор устанавливается даже на выходе интегральных стабилизаторов напряжения типа LM78XX. Это требуется даже техническими условиями (Data Sheet) на микросхемные стабилизаторы.

Параметрический стабилизатор может обеспечить в нагрузке ток до нескольких миллиампер, в данном случае около двадцати. В схемах электронных устройств такой стабилизатор применяется достаточно часто. Коэффициент стабилизации (соотношение изменения входного напряжения в %% к изменению выходного, также в %%) таких стабилизаторов, как правило, не более 2.

Если параметрический стабилизатор дополнить эмиттерным повторителем, всего на одном транзисторе, как показано на рисунке 5, то возможности параметрического стабилизатора станут намного выше. Коэффициент стабилизации подобных схем достигает значения 70.

При указанных на схеме параметрах и токе нагрузки 1А на транзисторе будет рассеиваться достаточная мощность. Такая мощность рассчитывается следующим образом: разность напряжений коллектор – эмиттер умножается на ток нагрузки. В данном случае это и есть ток коллектора. (12В – 5в)*1А = 7Вт. При такой мощности транзистор придется ставить на радиатор.

Мощность, отдаваемая в нагрузку, будет всего 5в*1А = 5Вт. Цифры, показанные на рисунке 5, вполне достаточны, чтобы произвести подобный расчет. Таким образом, КПД источника питания с таким стабилизатором при входном напряжении 12В всего около 40%. Чтобы его несколько повысить можно уменьшить входное напряжение, но не менее, чем до 8 вольт, иначе стабилизатор перестанет работать.

Для того, чтобы собрать стабилизатор напряжения отрицательной полярности достаточно в рассмотренной схеме заменить транзистор проводимости n-p-n на проводимость p-n-p, поменять полярность включения стабилитрона и входного напряжения. Но такие схемы стали уже анахронизмом, в настоящее время не применяются, им на смену пришли интегральные стабилизаторы напряжения.

Казалось, что вполне достаточно рассмотренную схему выполнить в интегральном варианте и все было бы в порядке. Но разработчики не стали повторять малоэффективную схему, уж слишком маленький у нее КПД, да и стабилизация невелика. Для повышения коэффициента стабилизации в современные интегральные стабилизаторы введена отрицательная обратная связь.

Такие стабилизаторы разрабатывались на ОУ общего применения, пока схемотехник и разработчик Р.Видлар не предложил этот ОУ интегрировать внутрь стабилизатора. Первым стабилизатором подобного рода был легендарный UA723, требовавший при установке некоторого числа дополнительных деталей.

Более современным вариантом интегральных стабилизаторов являются стабилизаторы серий LM78XX для напряжения положительной полярности и LM79XX для отрицательной. В этой маркировке 78 это собственно название микросхемы – стабилизатора, буквы LM перед цифрами могут быть и другими, – зависит от конкретного производителя. Вместо букв XX вставляются цифры, указывающие напряжение стабилизации в вольтах: 05, 08, 12, 15 и т.д. Кроме стабилизации напряжения, микросхемы имеют защиту от короткого замыкания в нагрузке и тепловую защиту. Как раз то, что требуется для создания простого и надежного лабораторного блока питания.

Отечественная электронная промышленность выпускает такие стабилизаторы под маркой КР142ЕНXX. Но маркировка у нас как всегда зашифрованная, поэтому определить напряжение стабилизации можно только по справочнику или заучивать как стихи в школе. Все упомянутые стабилизаторы имеют фиксированное значение выходного напряжения. Типовая схема включения стабилизаторов серии 78XX показана на рисунке 6.

Однако, на их основе можно создать и регулируемые источники. В качестве примера можно привести схему, показанную на рисунке 7.

Недостатком схемы можно считать, что регулирование производится не от нуля, а от 5 вольт, т.е. от напряжения стабилизации микросхемы. Непонятно почему выводы стабилизатора пронумерованы как 17, 8, 2, когда на самом деле их всего лишь три!

А на рисунке 9 показано, как на базе оригинальной буржуйской LM317 собрать регулируемый блок питания, которым можно пользоваться в качестве лабораторного.

Если потребуется двухполярный регулируемый источник, то проще всего в одном корпусе собрать два одинаковых стабилизатора, запитав их от разных обмоток трансформатора. При этом вывести на переднюю панель блока отдельными клеммами выход каждого стабилизатора. Коммутировать напряжения можно будет просто проволочными перемычками.

Если театр начинается с вешалки, то каждая автоматизированная испытательная система, проверяющая радиотехнические устройства и радиоаппаратуру — уж точно с лабораторного стабилизированного источника питания.

Сегодня в статье раскладываем по полочкам: классификацию, конструктивные особенности, основные режимы и возможности блоков питания с регулировкой тока и напряжения. Рассмотрим матчасть и ответим на самые частые вопросы, которые возникают при выборе оптимального лабораторного блока питания (ЛБП), который снабжал бы вас чистым и стабильным питанием изо дня в день.

Итак, что такое ЛБП, для каких целей он служит.

Лабораторный источник питания – это электронное устройство, которое формирует и регулирует напряжение и ток, а при изменении напряжения питающей сети и сопротивления нагрузки, поддерживает заданные значения с высокой точностью. Один из видов источников вторичного электропитания (ИВЭП). Прибор оборудован экраном, кнопками, индикаторами, потенциометрами регулирования, защитными функциями от ошибочного включения и неправильного применения.

Читайте также:  Системы вентиляции и кондиционирования для частного дома

Абсолютно все лабораторные БП характеризуются по следующим признакам:

  1. По принципу действия: бывают линейные (трансформаторные) или импульсные.
  2. По границам изменения тока и напряжения: бывают фиксированные или с выбором пределов мощности в автоматическом режиме.
  3. По числу действующих каналов: многоканальные и одноканальные приборы.
  4. По изоляции выходных каналов: неизолированные и с гальванической изоляцией.
  5. По значению мощности.
  6. По имеющейся защитной функции.
  7. По постоянному или переменному току и напряжению на выходе.
  8. По способам управления: с ручным, комбинированным или программным управлением.
  9. По добавочным возможностям: изменение выхода определенных величин, компенсация падения напряжения в проводах присоединения, активация по времени и прочее.
  10. По степени надежности устройства: качество элементной базы, достоверный контроль параметров на выходе.
  11. Удобная эргономика и современный дизайн.

Типовые применения лабораторного источника питания

Источники питания применяются как для повседневных задач радиолюбителя, так и для точных производственных испытаний и измерений. Область применения источников питания обширна и связана с электроникой и радиотехникой. Типовые сферы использования:

  • Ремонт и производство радиоэлектроники.
  • Тестирование электронных устройств и схем, контрольно-измерительного оборудования, контроль качества элементов радиотехники.
  • Проектирование и испытание радиоэлектронной аппаратуры на производстве, при конструировании.
  • Моделирование электрических и физических процессов, для эмуляции работы того или иного оборудования.
  • Использование в качестве источников питания.
  • Для проведения лабораторных работ в учебном процессе.

Полное представление о задачах, для которых необходимо приобрести лабораторный источник питания поможет конкретизировать поиск и выбор оптимальной модели прибора.

Клиенты Суперайс могут выбрать в каталоге подходящую модель стабилизированного источника питания. В каталоге представлено более 140 моделей, каждый из образцов обладает определёнными преимуществами при решении конкретных задач.

При выборе руководствуются:

  • рабочими параметрами;
  • наличием защитных функций;
  • мощностью и количеством выходных каналов;
  • размерами;
  • стоимостью прибора.

Рассмотрим подробнее основные технические характеристики источников питания, характеризующие эффективность устройства.

Основные рабочие характеристики

Состояние выходных характеристик при регулировании нагрузки отличается нестабильностью параметров тока и напряжения при необходимости изменить нагрузку тестируемого оборудования. На какие характеристики обращают внимание при выборе:

  1. Нестабильность тока и напряжения питающей сети при изменении переменного тока. Погрешность задания выходных величин, качество измерения в соответствии с вольт-амперной характеристикой.
  2. Погрешность измерений – качество измеренных значений, схожих с вольт-амперной характеристикой.
  3. Разрешение – шаг установки тока и напряжения на выходе, которые могут быть заданы.
  4. Шумность. Шум в синфазном режиме и нормальный уровень шума.
  5. Переходные характеристики: время перехода к начальным заданным показателям после изменения тока потребителя.
  6. Компенсация потерь при подключении по 4-х проводной схеме для управления элементами, регулирующими выходное напряжение при использовании измерительных проводов для компенсации потерь в питающей сети. К напряжению на выходе из источника добавляется напряжение, которое равно разности потенциалов между общими проводниками, основным и плавающим.
  7. Интерфейсы управления.

Грубая и точная регулировка, минимальный уровень шума, повышенные возможности при подключении смогут обеспечить оптимальный выбор прибора.

Стабилизированные ИП по характеру стабилизации: линейные и импульсные

Главный признак, характеризующий блок питания – это принцип его работы. Стабилизированные источники вторичного питания на полупроводниковых элементах по характеру стабилизации напряжения делятся на источники с непрерывным (линейным) и импульсным регулированием.

Основа линейного БП – понижающий низкочастотный трансформатор: изменяет напряжение сети до значения в несколько десятков вольт. Выпрямление напряжения производится за счет диодного моста сглаживанием синусоиды конденсаторами и заданием требуемого значения стабилизатором. Пример популярного линейного блока питания: трансформаторный БП с одним каналом YIHUA YH-305D (30 В, 5 А), эта модель способна выдавать мощность до 150 Вт.

Главное в импульсном ИП – это конденсаторы со сглаживающим зарядом и импульсами тока, сформированными трансформаторной обмоткой или индуктивностью. В работе задействованы транзисторы. Частота формирования токовых импульсов. Напряжение регулируется глубиной ШИМ (широтно-импульсной модуляции). Пример мощного импульсного одноканального блока питания – MAISHENG MP3030D (30 В, 30 А).

Более подробно о сравнении импульсных и линейных ИП мы уже написали в статье: Устройство, схемы и сравнение импульсных и линейных лабораторных блоков питания.

На какие особенности регулируемых блоков питания обращать внимание

Диапазон изменения тока и напряжения

Лабораторные настольные источники питания различаются пределами изменения выходных напряжений и тока. Различают два типа приборов, те, которые работают с фиксированными значениями и работающие с автоматическим ограничением мощности на выходе.

Фиксированным диапазоном отличаются ЛБП эконом-класса. Устройства выдают комбинацию напряжения и тока наибольшего значения по максимуму. Например, блок питания с одним каналом на напряжение 30 В и токе 10 А может поддерживать нагрузку (ток) неизменной долгое время при том же напряжении. Мощность составит U x I; 30 х 10 = 300 Вт. Однако, с таким напряжением и током невозможно установить другие большие значения тока и напряжения.

Автоматический выбор выходной мощности с ограничением пределов характерен для функциональных ЛБП с высокой точностью и дискретностью измерения выходного тока, достаточного для отладки любых, в том числе и маломощных устройств с батарейками. Такие блоки могут выдавать комбинации тока и напряжения в пределах мощности, на которую рассчитан прибор. Приборы относятся к универсальной категории устройств.

На габаритные размеры, вес и стоимость источники питания постоянного тока или напряжения влияет максимальная мощность, а не ток и не напряжение. Значит, надо выбирать устройство с автоматическим ограничением мощности на выходе.

Число каналов

Мощные ЛБП от 500 Вт, по большей части, одноканальные. Иногда возникает вопрос, а можно ли объединить в последовательную цепь несколько импульсных БП с одним каналом. Что для этого учитывают:

  1. Различие частот создает пульсации и шумность. Существует возможность возникновения резонансных факторов, при их наличии пульсация возрастает.
  2. Формирование значений биполярного напряжения для подключения к сети питания транзисторных усилителей.
  3. Сложность включения в одну цепь одновременно и синхронизация регулировки напряжений двух и более разных приборов. При объединении в одну цепь двух лабораторных БП «+» и «-» должны быть синхронизированы.
  4. Последовательное соединение источников высокого напряжения сопряжено с вероятностью пробоя изоляции, что иногда приводит к короткому замыканию и возгоранию.

Поэтому, для схемы где имеется возможность применить несколько напряжений питания сети лучше всего использовать двух- или трехканальные стабилизированные блоки питания.

Пример многофункционального одноканального блока питания Korad KA3005D (30 В, 5 А) линейного типа, используемого для последовательного соединения в цепь. Прибор используется для промышленного производства и научных исследований. Выполняет измерение параметров питания и стабилизацию постоянного режима тока и напряжения во время технологических процессов. Прибор отличается:

  • небольшим коэффициентом искажения;
  • малыми пульсациями;
  • регулировкой выходных характеристик;
  • возможностью отключения потребителя в аварийном режиме; невысоким уровнем шума;
  • цифровым управлением с возможностью задания выходных параметров на лицевой панели; сохранением в памяти установленных режимов для различных потребителей.

Для справки: Параллельное соединение ИП с разными напряжениями чревато тем, что один из двух источников с большими пределами по мощности будет работать вполсилы. При подключении устройств с характеристиками 15 В / 30 А и 30 В / 30 А на выходе получатся значения 15 В / 60 А. Блок питания на 30 В будет выдавать всего 15 В. Не допускается подключать БП с разными токами, при КЗ мощный БП может вывести из строя более слабый.

Изоляция выходных каналов

Электрическая или как ее правильно называют гальваническая изоляция – это гарантия независимости напряжения и тока одного канала от других. Изоляция защищает канал от замыкания на землю и между другим каналом, защищает от электрического пробоя.

Гальваническая изоляция каналов предупреждает пробой напряжения между рядом расположенными каналами, значение которого может превысить 220 В. Она нужна для электронного оборудования, в котором присутствуют аналоговая и цифровая части. Служит для понижения шума чувствительной цифровой шины питания в аналоговую часть.

Трёхканальные лабораторный источник питания постоянного тока обладают следующим преимуществом. Устройство позволит запитать аналоговую часть схемы от двух каналов, используя двухполюсное питание, а питание от третьего канала приходит на цифровую часть. Пример 3-х канального импульсного источника питания постоянного тока – UNI-T UTP3305. Трансформаторный источник с тремя каналами – Atten (Gratten) APS3005S-3D. Гальваническая изоляция надежно защищает целостность каналов.

Требования к мощности и числу выходов

Главный вопрос, который задают при выборе стабилизированного источника питания: какая мощность потребуется, какие приборы вам придется испытывать? Сколько мощности будут потреблять испытуемые устройства?

По величине рабочей мощности источника питания выделяют обычные со стандартным и высоким значением мощности до 500 Вт и высокомощные, которые работают с величинами более 700 Вт. Отличие моделей заключается в функциональности и сфере использования.

Модели ЛБП средней мощности MAISHENG MS3010D и QJE PS3010N обеспечат регулировку оборудования в пределах до 300 Вт. Подробно о конструкции мы рассказали в видеообзоре: ИП с импульсным регулированием китайского производителя MAISHENG. Там мы нагружали популярные модели на полную и смотрели их начинку и схемотехнику!

Рисунок 4. Лабораторный блок питания постоянного тока для отладки радиолюбительских устройств с возможностью регулирования напряжения на выходе до 30 В и тока до 10 А. Режим измерения тока импульсным блоком питания.

Пример управляемого импульсного блока питания малой мощности MCH K305DN (30 В, 5 А). Регулировка выполняется потенциометрами на лицевой панели, напряжение до 31 В и тока до 5 А, который держит в течение 30 минут спокойно. Отличается большим КПД, малым весом и размерами.

Образцы с большой мощностью только одноканальные и только импульсные. Пример, MAISHENG MP1560D (15 В, 60 А), устройство выдает стабильное напряжение без помех 15 В и ток до 60 А, используется в лабораторных исследованиях и для ремонта электроники.

Образцы с мощностью до 3 кВ применяются в качестве приборов для стоек управления. Модели более 3 кВ, например, MAISHENG MP15030D (150 В, 30 А) с выходной мощностью 4,5 кВ применяются в промышленных стойках, так как имеют большой вес 9500 г и размеры 380 х 260 х 160 мм. Данные одноканальные ИБП обладают более высокими выходными характеристиками.

Для справки: Если БП нужны для стабилизации тока для повышения его значения при зарядке аккумуляторов, то алгоритм зарядки следующий. Вначале ток растет, а потом зарядка происходит в режиме минимальный ток – максимальный ток. Повышение нагрузки вызывает вывод одного блока на максимальный ток, а затем другого. Зарядка аккумуляторов профессиональными блоками питания, представленными в Суперайс производится как отдельно, так и в связке, не важно находятся устройства под нагрузкой или нет.

Конструкция лабораторных ИП большой мощности оборудована защитными устройствами, к которым относятся вентиляторы охлаждения, включающиеся при повышении температуры. Набор защит от перегрузки, повышения температуры, смены полярности.

Для увеличения выходной мощности предусмотрена возможность параллельного подключения нескольких приборов.

Для мощных блоков питания существует возможность удаленного программного управления через разнообразные интерфейсы Ethernet, IEEE-488.2 (GPIB) и другие, используемые в комплекте с автоматизированными комплексами.

Мощные ЛБП применяются в автопроме и альтернативной энергетике для регулирования собственного выходного сопротивления до нескольких Ом, что может пригодиться во время имитации работы аккумуляторных и солнечных батарей.

Защитные функции

Неправильное применение блока питания, подача повышенного напряжения или тока может представлять угрозу тестируемому оборудованию. Для того, чтобы этого не случилось, лабораторные источники питания обеспечиваются защитными функциями:

  1. Превышение тока на выходе, скачки случаются при кз или повышении нагрузки. Защита характеризуется быстротой срабатывания, отключает устройство от тестируемой нагрузки, ограничивает и стабилизирует ток, сохраняя первоначальную величину. Функции защиты можно отключать.
  2. Перенапряжение. Защита устанавливается при повышении выходного напряжения во время стабилизации тока, ограничивает напряжение выхода в безопасном режиме для подключенной нагрузки.
  3. Перегруз по мощности. Функция ограничивает мощность, нормализует работу силовых элементов схемы БП.
  4. Перегрев устройства и конструктивных элементов. Защита срабатывает при увеличении температуры в точках наибольшего выделения тепла.

Форма выходного сигнала

Основная задача ЛБП – это формирование стабильного постоянного напряжения даже при изменении тока нагрузки. В быту и промышленности к потребителю поступает напряжение только с чистой синусоидой. Однако при использовании импульсного блока, во время замены переменного напряжения 220 В на постоянное для подключения электроники, синус, то есть форма напряжения меняется. Также в режиме стабилизации тока БП подает потребителю постоянный ток. Блоки питания оборудуются «Режимом изменения выходного напряжения по списку заданных значений». С этим режимом можно испытывать оборудование, подавая на него не идеальные сигналы со скачками, пульсациями и перерывами в напряжении, спадом и нарастаниями.

Ручное или программируемое управление

Работа программируемого источника питания постоянного тока основана на работе компьютерной программы, которая демонстрирует характеристики и настройки. Кроме этого, программа подразумевает включение нескольких ЛБП в измерительный комплекс.

Пример популярных программируемых блоков питания: трансформаторный Korad KA6005P и Rigol DP711 оба устройства с одним каналом. Отличаются надежностью и наибольшей востребованностью среди радиолюбителей трехканальные модели Korad KA3305P и OWON ODP3032.

Рисунок 5. Программируемый стабилизированный источники питания радиоаппаратуры Korad KA3305P

Особое внимание радиолюбителей и профессионалов обращаем на прецизионный блок питания со стабилизацией по всем параметрам Rigol DP832A. Выходная мощность до 195 Вт. Регулируемое напряжение по двум каналам 30 В и от 0 до 5 В по третьему каналу. Регулируемый ток до 3 А. Блок защищен от малейших выбросов тока на выходах с каждого канала, высоким КПД до 80% и коэффициентом падения напряжения и тока при стабилизации, не превышающей 0,01%.

К программируемым БП относятся многоканальные источники питания переменного и постоянного тока, которые входят в категорию интеллектуальных устройств. Это дорогой ЛБП Itech IT7326 до 3 кВт мощности и комбинированным управлением.

Дополнительная возможность: компенсация падения напряжения в проводах соединения

Условие достигается наличием USB-интерфейса для управления источником питания с удаленного места. Также, использование буферной схемы, формирующей «плавающий» провод типа повторителя напряжения, где напряжение на выходе соответствует падению напряжения на минусовом (обратном) проводе.

Использование лабораторного блока питания для ремонта мобильных телефонов и ноутбуков

Для мастерских по ремонту мобильных телефонов, нужен БП с напряжением выхода до 15 В и значением тока от 1 А и выше.

Оценка неисправности мобильного телефона в 80% случаев основана на вычислении неисправности по току нагрузки. Телефон через набор съёмных концов подключается от ЛБП. От источника питания можно подключить любой телефон, даже с разряженной батареей. При включении телефона триггером PWR каждый этап загрузки демонстрируется амперметром, который показывает последовательность включения относительно потребления тока. Благодаря этому по току можно определить неисправный компонент телефона.

Стоимость блока питания

Покупая источник питания, потребитель должен в полной мере представлять реальную стоимость владения устройством. Учитываются потенциальные потери, которые происходят из-за простоя аппаратуры, затраты на защиту ЛБП, возможный ремонт, степень надежности БП.

Выбирайте производителя, которому доверяете. Оцените профессионализм и надёжность поставщика. На сайте Суперайс представлены модели, качество которых подтверждено сертификационными и гарантирующими документами.

Поставку надежных лабораторных блоков питания доверьте Суперайс

Выберите оптимальный вариант и оформите заказ, и наш менеджер свяжется с вами. В Суперайс всем клиентам, оформившим заказ на сумму свыше 3000 рублей, заказы доставляем бесплатно.

Если вы ищете источник питания для узкоспециальных задач или не хотите тратить время на поиск нужного оборудования — мы сами подберём подходящий именно вам источник питания, чтобы вы могли избежать неоправданных расходов. Отправьте заявку на почту sales@supereyes.ru, напишите в чат или позвоните по номеру 8 800 550-13-57 .

Наши технические специалисты работают с 03:00 до 16:00 по московскому времени и готовы ответить на любой вопрос и помочь вам в подключении и настройке оборудования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector